File size: 12,124 Bytes
3d162c7
 
 
c0e3871
3d162c7
 
aebc78c
212cba8
51d599e
 
212cba8
51d599e
b98b2df
58c44f9
 
 
b98b2df
 
51d599e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58c44f9
 
 
 
 
 
 
 
 
 
39fd183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58c44f9
 
 
3395c99
51d599e
58c44f9
 
 
 
 
3395c99
 
 
 
 
 
39fd183
 
58c44f9
 
 
51d599e
58c44f9
 
 
 
 
 
 
 
 
 
 
 
51d599e
 
6319e3a
 
 
 
51d599e
58c44f9
51d599e
 
 
58c44f9
51d599e
2fad53b
51d599e
25b2ed0
51d599e
b98b2df
58c44f9
 
3d162c7
 
c0e3871
51d599e
 
 
 
b98b2df
 
25b2ed0
58c44f9
25b2ed0
b98b2df
 
c0e3871
2fad53b
c0e3871
 
fe49e63
51d599e
 
fe49e63
51d599e
 
3d162c7
6319e3a
51d599e
 
 
 
 
6319e3a
3d162c7
 
51d599e
 
3d162c7
 
25b2ed0
 
51d599e
25b2ed0
 
 
 
51d599e
 
25b2ed0
 
3d162c7
 
51d599e
 
 
 
b98b2df
 
 
 
 
c0e3871
51d599e
 
 
2853e5a
6319e3a
58c44f9
 
 
 
3d162c7
51d599e
3d162c7
 
39fd183
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
import requests
import folium
from datetime import datetime, timedelta
import tempfile
import os
from PIL import Image, ImageDraw, ImageFont
import io
import boto3
import botocore

# Montana Mountain Peaks coordinates (for map and quick access buttons)
MONTANA_PEAKS = {
    "Lone Peak (Big Sky)": (45.27806, -111.45028),
    "Sacajawea Peak": (45.89583, -110.96861),
    "Pioneer Mountain": (45.231835, -111.450505)
}

def get_nexrad_file(station, product="N0S", hours_back=6):
    """
    Connects to the NOAA NEXRAD Level-II S3 bucket (noaa-nexrad-level2) and
    retrieves the latest file (within the past `hours_back` hours) for the given
    station and product code. The files are stored under the path:
        {station}/{YYYY}/{MM}/{DD}/
    and have filenames like:
        {station}_{YYYYMMDD}_{HHMM}_{product}.gz
    Returns a tuple of (local_file_path, s3_key) or (None, "") if no file was found.
    """
    s3 = boto3.client('s3')
    bucket = "noaa-nexrad-level2"
    now = datetime.utcnow() - timedelta(minutes=20)  # allow for delay
    start_time = now - timedelta(hours=hours_back)
    files = []
    # Check each hour in the time window
    for i in range(hours_back + 1):
        dt = start_time + timedelta(hours=i)
        prefix = f"{station}/{dt.strftime('%Y')}/{dt.strftime('%m')}/{dt.strftime('%d')}/"
        try:
            resp = s3.list_objects_v2(Bucket=bucket, Prefix=prefix)
        except botocore.exceptions.ClientError as e:
            continue
        if "Contents" in resp:
            for obj in resp["Contents"]:
                key = obj["Key"]
                # Look for the desired product code in the filename.
                # Typical filename: KMSX_20250221_1320_N0S.gz (or similar)
                if f"_{product}." in key:
                    try:
                        parts = key.split("_")
                        if len(parts) >= 3:
                            # Combine the date and time parts
                            timestamp_str = parts[1]  # YYYYMMDD
                            time_str = parts[2]       # HHMM (might include additional info if not split by underscore)
                            # Remove any suffix from time_str (e.g. if it ends with extra letters)
                            time_str = ''.join(filter(str.isdigit, time_str))
                            file_dt = datetime.strptime(timestamp_str + time_str, "%Y%m%d%H%M")
                            if start_time <= file_dt <= now:
                                files.append((file_dt, key))
                    except Exception as e:
                        continue
    if not files:
        return None, ""
    # Sort descending by file timestamp and choose the latest file
    files.sort(key=lambda x: x[0], reverse=True)
    latest_file_key = files[0][1]
    # Download the file to a temporary location
    tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".gz")
    s3.download_file(bucket, latest_file_key, tmp_file.name)
    return tmp_file.name, latest_file_key

def get_noaa_forecast(lat, lon):
    """Get NOAA text forecast using the points API."""
    try:
        points_url = f"https://api.weather.gov/points/{lat},{lon}"
        response = requests.get(points_url, timeout=10)
        forecast_url = response.json()['properties']['forecast']
        forecast = requests.get(forecast_url, timeout=10).json()
        text = "Weather Forecast:\n\n"
        for period in forecast['properties']['periods']:
            text += f"{period['name']}:\n"
            text += f"Temperature: {period['temperature']}°{period['temperatureUnit']}\n"
            text += f"Wind: {period['windSpeed']} {period['windDirection']}\n"
            text += f"{period['detailedForecast']}\n\n"
            if any(word in period['detailedForecast'].lower() for word in 
                   ['snow', 'flurries', 'wintry mix', 'blizzard']):
                text += "⚠️ SNOW EVENT PREDICTED ⚠️\n\n"
        return text
    except Exception as e:
        return f"Error getting forecast: {str(e)}"

def get_forecast_products(lat, lon):
    """Download and process various forecast product images."""
    gallery_data = []
    timestamp = datetime.utcnow().strftime('%Y-%m-%d %H:%M UTC')
    products = [
        ("MaxT1_conus.png", "Maximum Temperature"),
        ("MinT1_conus.png", "Minimum Temperature"),
        ("QPF06_conus.png", "6-Hour Precipitation"),
        ("QPF12_conus.png", "12-Hour Precipitation"),
        ("QPF24_conus.png", "24-Hour Precipitation"),
        ("Snow1_conus.png", "Snowfall Amount"),
        ("Snow2_conus.png", "Snowfall Day 2"),
        ("Wx1_conus.png", "Weather Type"),
    ]
    base_url = "https://graphical.weather.gov/images/conus"
    for filename, title in products:
        try:
            url = f"{base_url}/{filename}"
            response = requests.get(url, timeout=10)
            if response.status_code == 200:
                img = Image.open(io.BytesIO(response.content)).convert('RGB')
                img = crop_to_region(img, lat, lon)
                draw = ImageDraw.Draw(img)
                text = f"{title}\n{timestamp}"
                draw_text_with_outline(draw, text, (10, 10))
                with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
                    img.save(tmp.name)
                    gallery_data.append(tmp.name)
        except Exception as e:
            continue
    return gallery_data

def crop_to_region(img, lat, lon, zoom=1.5):
    """Crop image to focus on selected region."""
    img_width, img_height = img.size
    lat_min, lat_max = 25.0, 50.0
    lon_min, lon_max = -125.0, -65.0
    x = (lon - lon_min) / (lon_max - lon_min) * img_width
    y = (lat_max - lat) / (lat_max - lat_min) * img_height
    crop_width = img_width / zoom
    crop_height = img_height / zoom
    x1 = max(0, x - crop_width / 2)
    y1 = max(0, y - crop_height / 2)
    x2 = min(img_width, x + crop_width / 2)
    y2 = min(img_height, y + crop_height / 2)
    if x1 < 0: 
        x2 -= x1
        x1 = 0
    if y1 < 0: 
        y2 -= y1
        y1 = 0
    if x2 > img_width: 
        x1 -= (x2 - img_width)
        x2 = img_width
    if y2 > img_height: 
        y1 -= (y2 - img_height)
        y2 = img_height
    cropped = img.crop((x1, y1, x2, y2))
    return cropped.resize((img_width, img_height), Image.Resampling.LANCZOS)

def draw_text_with_outline(draw, text, pos, font_size=20, center=False):
    """Draw text with an outline for better visibility."""
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", font_size)
    except:
        font = ImageFont.load_default()
    x, y = pos
    if center:
        bbox = draw.textbbox((0, 0), text, font=font)
        text_width = bbox[2] - bbox[0]
        text_height = bbox[3] - bbox[1]
        x = x - text_width // 2
        y = y - text_height // 2
    for dx, dy in [(-1, -1), (-1, 1), (1, -1), (1, 1)]:
        draw.text((x + dx, y + dy), text, fill='black', font=font)
    draw.text((x, y), text, fill='white', font=font)

def get_map(lat, lon):
    """Create a folium map centered on the coordinates with markers for Montana peaks."""
    m = folium.Map(location=[lat, lon], zoom_start=9)
    for peak_name, coords in MONTANA_PEAKS.items():
        folium.Marker(
            coords,
            popup=f"{peak_name}<br>Lat: {coords[0]:.4f}, Lon: {coords[1]:.4f}",
            tooltip=peak_name
        ).add_to(m)
    if (lat, lon) not in MONTANA_PEAKS.values():
        folium.Marker([lat, lon], popup=f"Selected Location<br>Lat: {lat:.4f}, Lon: {lon:.4f}").add_to(m)
    m.add_child(folium.ClickForLatLng())
    return m._repr_html_()

def update_weather(lat, lon, station, product):
    """Update weather info and retrieve raw radar data from AWS."""
    try:
        lat = float(lat)
        lon = float(lon)
        if not (-90 <= lat <= 90 and -180 <= lon <= 180):
            return "Invalid coordinates", [], "No radar data", get_map(45.5, -111.0), ""
        forecast_text = get_noaa_forecast(lat, lon)
        # Retrieve raw radar data file from AWS (returns local file path and S3 key)
        radar_file_path, radar_key = get_nexrad_file(station, product, hours_back=6)
        # Get forecast product images
        forecast_frames = get_forecast_products(lat, lon)
        gallery_data = forecast_frames
        map_html = get_map(lat, lon)
        return forecast_text, gallery_data, radar_file_path, map_html, radar_key
    except Exception as e:
        return f"Error: {str(e)}", [], "No radar data", get_map(45.5, -111.0), ""

with gr.Blocks(title="Montana Mountain Weather") as demo:
    gr.Markdown("# Montana Mountain Weather")
    
    with gr.Row():
        with gr.Column(scale=1):
            lat_input = gr.Number(label="Latitude", value=45.5, minimum=-90, maximum=90)
            lon_input = gr.Number(label="Longitude", value=-111.0, minimum=-180, maximum=180)
            station_input = gr.Textbox(label="Radar Station ID", value="KMSX")
            product_input = gr.Textbox(label="Radar Product Code", value="N0S")
            
            gr.Markdown("### Quick Access - Montana Peaks")
            peak_buttons = []
            for peak_name in MONTANA_PEAKS:
                peak_buttons.append(gr.Button(f"📍 {peak_name}"))
            
            submit_btn = gr.Button("Get Weather", variant="primary")
        with gr.Column(scale=2):
            map_display = gr.HTML(get_map(45.5, -111.0))
    
    with gr.Row():
        with gr.Column(scale=1):
            forecast_output = gr.Textbox(label="Weather Forecast", lines=12,
                                         placeholder="Select a location to see the forecast...")
        with gr.Column(scale=2):
            radar_data_output = gr.Textbox(label="Raw Radar Data File Path",
                                           placeholder="Radar data file path will appear here")
    
    with gr.Row():
        forecast_gallery = gr.Gallery(label="Forecast Products", show_label=True,
                                      columns=4, height=600, object_fit="contain")
    
    radar_key_output = gr.Textbox(label="S3 Key for Radar Data",
                                  placeholder="S3 key will appear here")
    
    submit_btn.click(
        fn=update_weather,
        inputs=[lat_input, lon_input, station_input, product_input],
        outputs=[forecast_output, forecast_gallery, radar_data_output, map_display, radar_key_output]
    )
    
    for i, peak_name in enumerate(MONTANA_PEAKS.keys()):
        peak_buttons[i].click(
            fn=lambda name=peak_name: MONTANA_PEAKS[name],
            inputs=[],
            outputs=[lat_input, lon_input]
        ).then(
            fn=update_weather,
            inputs=[lat_input, lon_input, station_input, product_input],
            outputs=[forecast_output, forecast_gallery, radar_data_output, map_display, radar_key_output]
        )
    
    gr.Markdown("""
    ## Instructions
    1. Use the quick access buttons to check specific Montana peaks.
    2. Or enter coordinates manually (or click on the map).
    3. Enter the Radar Station ID (e.g., KMSX) and Radar Product Code (e.g., N0S).
    4. Click "Get Weather" to see the forecast, forecast product images, and to download the latest raw radar data file from NOAA’s AWS bucket.
    
    **Montana Peaks Included:**
    - Lone Peak (Big Sky): 45°16′41″N 111°27′01″W
    - Sacajawea Peak: 45°53′45″N 110°58′7″W
    - Pioneer Mountain: 45°13′55″N 111°27′2″W
    
    **Radar Data:**
    - This app now retrieves raw NEXRAD Level‑II data (e.g. the “N0S” product) from NOAA’s AWS S3 bucket.
    - You can process this raw file with external tools (like Py‑ART) to generate images.
    
    **Forecast Products:**
    - Temperature (Max/Min)
    - Precipitation (6/12/24 Hour)
    - Snowfall Amount
    - Weather Type
    
    **Note:** NOAA’s raw radar data is available via AWS and covers nearly all U.S. radars. For global coverage, you may need to explore additional sources.
    """)

demo.queue().launch()