Spaces:
Running
Running
File size: 7,967 Bytes
fe84f3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Dora the Explorer, special thank to @pierrestock.
"""
import argparse
import json
import logging
import shlex
import subprocess as sp
import time
from collections import namedtuple
from functools import partial
from itertools import product # noqa
from pathlib import Path
import treetable as tt # really great package for ascii art tables
from demucs.parser import get_name, get_parser
logger = logging.getLogger(__name__)
parser = get_parser()
logs = Path("logs")
logs.mkdir(exist_ok=True)
Job = namedtuple("Job", "args name sid")
def fname(name, kind):
return logs / f"{name}.{kind}"
def get_sid(name):
sid_file = fname(name, "sid")
try:
return int(open(sid_file).read().strip())
except IOError:
return None
def cancel(sid):
sp.run(["scancel", str(sid)], check=True)
def reset_job(name):
sid_file = fname(name, "sid")
if sid_file.is_file():
sid_file.unlink()
def get_done(name):
done_file = fname(name, "done")
return done_file.exists()
def get_metrics(name):
json_file = fname(name, "json")
try:
return json.load(open(json_file))
except IOError:
return []
def schedule(name, args, nodes=1, partition="priority", time=2 * 24 * 60, large=True, gpus=8):
log = fname(name, "log")
command = [
"sbatch",
f"--job-name={name}",
f"--output={log}.%t",
"--mem=460G",
f"--cpus-per-task={8*gpus}",
f"--gpus={gpus}",
f"--nodes={nodes}",
"--tasks-per-node=1",
f"--partition={partition}",
# "--exclude=learnfair0748,learnfair0821",
"--comment=Old codebase, not requeue, very few jobs",
f"--time={time}",
]
if large:
command += ["--constraint=volta32gb"]
srun_flags = f"--output={shlex.quote(str(log))}.%t"
run_cmd = ["#!/bin/bash"]
run_cmd.append(f"srun {srun_flags} python3 run_slurm.py " + " ".join(args))
result = sp.run(command, stdout=sp.PIPE, input="\n".join(run_cmd).encode('utf-8'),
check=True).stdout.decode('utf-8')
sid = int(result.strip().rsplit(' ', 1)[1])
open(fname(name, "sid"), "w").write(str(sid))
return sid
def _check(sids):
cs_ids = ','.join(map(str, sids))
result = sp.run(['squeue', f'-j{cs_ids}', '-o%A,%T,%P', '--noheader'],
check=True,
capture_output=True)
lines = result.stdout.decode('utf-8').strip().split('\n')
results = {}
for line in lines:
line = line.strip()
if not line:
continue
sid, status, partition = line.split(',', 2)
sid = int(sid)
results[sid] = status.lower()
for sid in sids:
if sid not in results:
results[sid] = 'failed'
return results
class Monitor:
def __init__(self, cancel=False, base=[]):
self.cancel = cancel
self.base = base
self.jobs = []
def schedule(self, args, *vargs, **kwargs):
args = self.base + args
name = get_name(parser, parser.parse_args(args))
sid = get_sid(name)
if sid is None and not self.cancel:
sid = schedule(name, args, *vargs, **kwargs)
self.jobs.append(Job(sid=sid, name=name, args=args))
def gc(self):
names = set(job.name for job in self.jobs)
for f in logs.iterdir():
stem, suffix = f.name.rsplit(".", 1)
if suffix == "sid":
if stem not in names:
sid = get_sid(stem)
if sid is not None:
print(f"GCing {stem} / {sid}")
cancel(sid)
f.unlink()
def check(self, trim=None, reset=False):
to_check = []
statuses = {}
for job in self.jobs:
if get_done(job.name):
statuses[job.sid] = "done"
elif job.sid is not None:
to_check.append(job.sid)
statuses.update(_check(to_check))
if trim is not None:
trim = len(get_metrics(self.jobs[trim].name))
lines = []
for index, job in enumerate(self.jobs):
status = statuses.get(job.sid, "failed")
if status in ["failed", "completing"] and reset:
reset_job(job.name)
status = "reset"
meta = {'name': job.name, 'sid': job.sid, 'status': status[:2], "index": index}
metrics = get_metrics(job.name)
if trim is not None:
metrics = metrics[:trim]
meta["epoch"] = len(metrics)
if metrics:
metrics = metrics[-1]
else:
metrics = {}
lines.append({'meta': meta, 'metrics': metrics})
table = tt.table(shorten=True,
groups=[
tt.group("meta", [
tt.leaf("index", align=">"),
tt.leaf("name"),
tt.leaf("sid", align=">"),
tt.leaf("status"),
tt.leaf("epoch", align=">")
]),
tt.group("metrics", [
tt.leaf("train", ".2%"),
tt.leaf("valid", ".2%"),
tt.leaf("best", ".2%"),
tt.leaf("true_model_size", ".2f"),
tt.leaf("compressed_model_size", ".2f"),
])
])
print(tt.treetable(lines, table, colors=["0", "38;5;245"]))
def main():
parser = argparse.ArgumentParser("grid.py")
parser.add_argument("-c", "--cancel", action="store_true", help="Cancel all jobs")
parser.add_argument(
"-r",
"--reset",
action="store_true",
help="Will reset the state of failed jobs. Next invocation will reschedule them")
parser.add_argument("-t", "--trim", type=int, help="Trim metrics to match job with given index")
args = parser.parse_args()
monitor = Monitor(base=[], cancel=args.cancel)
sched = partial(monitor.schedule, nodes=1)
tasnet = ["--tasnet", "--split_valid", "--samples=80000", "--X=10", "-b", "32"]
extra_path = Path.home() / "musdb_raw_44_allstems"
extra = [f"--raw={extra_path}"]
sched([])
sched(extra)
sched(tasnet)
sched(tasnet + ["--repitch=0"])
sched(tasnet + extra + ["--repitch=0"])
ch48 = ["--channels=48"]
sched(ch48)
ch32 = ["--channels=32"]
sched(ch32)
# Main models
for seed in [43, 44]:
base = [f"--seed={seed}"]
sched(base)
sched(base + extra)
sched(base + tasnet)
sched(base + tasnet + extra)
# Ablation study
sched(["--no_glu"])
sched(["--no_rewrite"])
sched(["--context=1"])
sched(["--rescale=0"])
sched(["--mse"])
sched(["--lstm_layers=0"])
sched(["--lstm_layers=0", "--depth=7"])
sched(["--no_resample"])
sched(["--repitch=0"])
# Quantization
sched(["--diffq=0.0003"])
if args.cancel:
for job in monitor.jobs:
if job.sid is not None:
print(f"Canceling {job.name}/{job.sid}")
cancel(job.sid)
return
names = [job.name for job in monitor.jobs]
json.dump(names, open(logs / "herd.json", "w"))
# Cancel any running job that was removed from the above sched calls.
monitor.gc()
while True:
if args.reset:
monitor.check(reset=True)
return
monitor.check(trim=args.trim)
time.sleep(5 * 60)
if __name__ == "__main__":
main()
|