nakas commited on
Commit
050507e
·
1 Parent(s): 29ab093

musika clone

Browse files
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Marco Pasini
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Musika Api
3
- emoji: 👀
4
- colorFrom: pink
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 3.11.0
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Musika
3
+ emoji: 🎵
4
+ colorFrom: purple
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 3.3.1
8
  app_file: app.py
9
  pinned: false
10
+ license: cc-by-4.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from parse_test import parse_args
2
+ from models import Models_functions
3
+ from utils import Utils_functions
4
+
5
+
6
+ # parse args
7
+ args = parse_args()
8
+
9
+ # initialize networks
10
+ M = Models_functions(args)
11
+ models_ls_1, models_ls_2, models_ls_3 = M.get_networks()
12
+
13
+ # test musika
14
+ U = Utils_functions(args)
15
+ U.render_gradio(models_ls_1, models_ls_2, models_ls_3, train=False)
checkpoints/ae/dec.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aebbb210da611415c8e15b4bd7cc62c20d6a702169c709c3e6cc3912fb0aa84
3
+ size 50781776
checkpoints/ae/dec2.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffc4c0d6821e23247889a2252da86f9ba22ad6425d004790457e0c2e57e18c65
3
+ size 26616400
checkpoints/ae/enc.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e56882c9e62aa4703a6d088efc374bfc534a4a8b4f3cdc0418fab1f0da1795a7
3
+ size 19196936
checkpoints/ae/enc2.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2f2f2b2b2879ad14690b2e64eb59f3b5dc3fbffaa88b37fdf5e8735b9dad305
3
+ size 15986152
checkpoints/metal/gen_ema.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e1f59d7fc67df5fa9eb0ab4665bcc9fe27d346fcfe60a082c8937c622105d7f
3
+ size 62200720
checkpoints/misc/gen_ema.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f0cb86f0bf22a568f1ef1ad5782d11543f9779069de996b81907328eeb24c8e
3
+ size 62200720
checkpoints/techno/gen_ema.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:582149f06f50197022758a7ca981a13164364871321ab2cf0662fc6ed7d634b0
3
+ size 62200304
layers.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import tensorflow.python.keras.backend as K
3
+ from tensorflow.python.eager import context
4
+ from tensorflow.python.ops import (
5
+ gen_math_ops,
6
+ math_ops,
7
+ sparse_ops,
8
+ standard_ops,
9
+ )
10
+
11
+
12
+ def l2normalize(v, eps=1e-12):
13
+ return v / (tf.norm(v) + eps)
14
+
15
+
16
+ class ConvSN2D(tf.keras.layers.Conv2D):
17
+ def __init__(self, filters, kernel_size, power_iterations=1, datatype=tf.float32, **kwargs):
18
+ super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
19
+ self.power_iterations = power_iterations
20
+ self.datatype = datatype
21
+
22
+ def build(self, input_shape):
23
+ super(ConvSN2D, self).build(input_shape)
24
+
25
+ if self.data_format == "channels_first":
26
+ channel_axis = 1
27
+ else:
28
+ channel_axis = -1
29
+
30
+ self.u = self.add_weight(
31
+ self.name + "_u",
32
+ shape=tuple([1, self.kernel.shape.as_list()[-1]]),
33
+ initializer=tf.initializers.RandomNormal(0, 1),
34
+ trainable=False,
35
+ dtype=self.dtype,
36
+ )
37
+
38
+ def compute_spectral_norm(self, W, new_u, W_shape):
39
+ for _ in range(self.power_iterations):
40
+
41
+ new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
42
+ new_u = l2normalize(tf.matmul(new_v, W))
43
+
44
+ sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
45
+ W_bar = W / sigma
46
+
47
+ with tf.control_dependencies([self.u.assign(new_u)]):
48
+ W_bar = tf.reshape(W_bar, W_shape)
49
+
50
+ return W_bar
51
+
52
+ def call(self, inputs):
53
+ W_shape = self.kernel.shape.as_list()
54
+ W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
55
+ new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
56
+ outputs = self._convolution_op(inputs, new_kernel)
57
+
58
+ if self.use_bias:
59
+ if self.data_format == "channels_first":
60
+ outputs = tf.nn.bias_add(outputs, self.bias, data_format="NCHW")
61
+ else:
62
+ outputs = tf.nn.bias_add(outputs, self.bias, data_format="NHWC")
63
+ if self.activation is not None:
64
+ return self.activation(outputs)
65
+
66
+ return outputs
67
+
68
+
69
+ class DenseSN(tf.keras.layers.Dense):
70
+ def __init__(self, datatype=tf.float32, **kwargs):
71
+ super(DenseSN, self).__init__(**kwargs)
72
+ self.datatype = datatype
73
+
74
+ def build(self, input_shape):
75
+ super(DenseSN, self).build(input_shape)
76
+
77
+ self.u = self.add_weight(
78
+ self.name + "_u",
79
+ shape=tuple([1, self.kernel.shape.as_list()[-1]]),
80
+ initializer=tf.initializers.RandomNormal(0, 1),
81
+ trainable=False,
82
+ dtype=self.datatype,
83
+ )
84
+
85
+ def compute_spectral_norm(self, W, new_u, W_shape):
86
+ new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
87
+ new_u = l2normalize(tf.matmul(new_v, W))
88
+ sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
89
+ W_bar = W / sigma
90
+ with tf.control_dependencies([self.u.assign(new_u)]):
91
+ W_bar = tf.reshape(W_bar, W_shape)
92
+ return W_bar
93
+
94
+ def call(self, inputs):
95
+ W_shape = self.kernel.shape.as_list()
96
+ W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
97
+ new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
98
+ rank = len(inputs.shape)
99
+ if rank > 2:
100
+ outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
101
+ if not context.executing_eagerly():
102
+ shape = inputs.shape.as_list()
103
+ output_shape = shape[:-1] + [self.units]
104
+ outputs.set_shape(output_shape)
105
+ else:
106
+ inputs = math_ops.cast(inputs, self._compute_dtype)
107
+ if K.is_sparse(inputs):
108
+ outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
109
+ else:
110
+ outputs = gen_math_ops.mat_mul(inputs, new_kernel)
111
+ if self.use_bias:
112
+ outputs = tf.nn.bias_add(outputs, self.bias)
113
+ if self.activation is not None:
114
+ return self.activation(outputs)
115
+ return outputs
116
+
117
+
118
+ class AddNoise(tf.keras.layers.Layer):
119
+ def __init__(self, datatype=tf.float32, **kwargs):
120
+ super(AddNoise, self).__init__(**kwargs)
121
+ self.datatype = datatype
122
+
123
+ def build(self, input_shape):
124
+ self.b = self.add_weight(
125
+ shape=[
126
+ 1,
127
+ ],
128
+ initializer=tf.keras.initializers.zeros(),
129
+ trainable=True,
130
+ name="noise_weight",
131
+ )
132
+
133
+ def call(self, inputs):
134
+ rand = tf.random.normal(
135
+ [tf.shape(inputs)[0], inputs.shape[1], inputs.shape[2], 1],
136
+ mean=0.0,
137
+ stddev=1.0,
138
+ dtype=self.datatype,
139
+ )
140
+ output = inputs + self.b * rand
141
+ return output
142
+
143
+
144
+ class PosEnc(tf.keras.layers.Layer):
145
+ def __init__(self, datatype=tf.float32, **kwargs):
146
+ super(PosEnc, self).__init__(**kwargs)
147
+ self.datatype = datatype
148
+
149
+ def call(self, inputs):
150
+ pos = tf.repeat(
151
+ tf.reshape(tf.range(inputs.shape[-3], dtype=tf.int32), [1, -1, 1, 1]),
152
+ inputs.shape[-2],
153
+ -2,
154
+ )
155
+ pos = tf.cast(tf.repeat(pos, tf.shape(inputs)[0], 0), self.dtype) / tf.cast(inputs.shape[-3], self.datatype)
156
+ return tf.concat([inputs, pos], -1) # [bs,1,hop,2]
157
+
158
+
159
+ def flatten_hw(x, data_format="channels_last"):
160
+ if data_format == "channels_last":
161
+ x = tf.transpose(x, perm=[0, 3, 1, 2]) # Convert to `channels_first`
162
+
163
+ old_shape = tf.shape(x)
models.py ADDED
@@ -0,0 +1,783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ from tensorflow.python.keras.utils.layer_utils import count_params
4
+
5
+ from layers import AddNoise
6
+
7
+
8
+ class Models_functions:
9
+ def __init__(self, args):
10
+
11
+ self.args = args
12
+
13
+ if self.args.mixed_precision:
14
+ self.mixed_precision = tf.keras.mixed_precision
15
+ self.policy = tf.keras.mixed_precision.Policy("mixed_float16")
16
+ tf.keras.mixed_precision.set_global_policy(self.policy)
17
+ self.init = tf.keras.initializers.he_uniform()
18
+
19
+ def conv_util(
20
+ self, inp, filters, kernel_size=(1, 3), strides=(1, 1), noise=False, upsample=False, padding="same", bnorm=True
21
+ ):
22
+
23
+ x = inp
24
+
25
+ bias = True
26
+ if bnorm:
27
+ bias = False
28
+
29
+ if upsample:
30
+ x = tf.keras.layers.Conv2DTranspose(
31
+ filters,
32
+ kernel_size=kernel_size,
33
+ strides=strides,
34
+ activation="linear",
35
+ padding=padding,
36
+ kernel_initializer=self.init,
37
+ use_bias=bias,
38
+ )(x)
39
+ else:
40
+ x = tf.keras.layers.Conv2D(
41
+ filters,
42
+ kernel_size=kernel_size,
43
+ strides=strides,
44
+ activation="linear",
45
+ padding=padding,
46
+ kernel_initializer=self.init,
47
+ use_bias=bias,
48
+ )(x)
49
+
50
+ if noise:
51
+ x = AddNoise(self.args.datatype)(x)
52
+
53
+ if bnorm:
54
+ x = tf.keras.layers.BatchNormalization()(x)
55
+
56
+ x = tf.keras.activations.swish(x)
57
+
58
+ return x
59
+
60
+ def pixel_shuffle(self, x, factor=2):
61
+ bs_dim, h_dim, w_dim, c_dim = tf.shape(x)[0], x.shape[1], x.shape[2], x.shape[3]
62
+ x = tf.reshape(x, [bs_dim, h_dim, w_dim, c_dim // factor, factor])
63
+ x = tf.transpose(x, [0, 1, 2, 4, 3])
64
+ return tf.reshape(x, [bs_dim, h_dim, w_dim * factor, c_dim // factor])
65
+
66
+ def adain(self, x, emb, name):
67
+ emb = tf.keras.layers.Conv2D(
68
+ x.shape[-1],
69
+ kernel_size=(1, 1),
70
+ strides=1,
71
+ activation="linear",
72
+ padding="same",
73
+ kernel_initializer=self.init,
74
+ use_bias=True,
75
+ name=name,
76
+ )(emb)
77
+ x = x / (tf.math.reduce_std(x, -2, keepdims=True) + 1e-5)
78
+ return x * emb
79
+
80
+ def conv_util_gen(
81
+ self,
82
+ inp,
83
+ filters,
84
+ kernel_size=(1, 9),
85
+ strides=(1, 1),
86
+ noise=False,
87
+ upsample=False,
88
+ emb=None,
89
+ se1=None,
90
+ name="0",
91
+ ):
92
+
93
+ x = inp
94
+
95
+ if upsample:
96
+ x = tf.keras.layers.Conv2DTranspose(
97
+ filters,
98
+ kernel_size=kernel_size,
99
+ strides=strides,
100
+ activation="linear",
101
+ padding="same",
102
+ kernel_initializer=self.init,
103
+ use_bias=True,
104
+ name=name + "c",
105
+ )(x)
106
+ else:
107
+ x = tf.keras.layers.Conv2D(
108
+ filters,
109
+ kernel_size=kernel_size,
110
+ strides=strides,
111
+ activation="linear",
112
+ padding="same",
113
+ kernel_initializer=self.init,
114
+ use_bias=True,
115
+ name=name + "c",
116
+ )(x)
117
+
118
+ if noise:
119
+ x = AddNoise(self.args.datatype, name=name + "r")(x)
120
+
121
+ if emb is not None:
122
+ x = self.adain(x, emb, name=name + "ai")
123
+ else:
124
+ x = tf.keras.layers.BatchNormalization(name=name + "bn")(x)
125
+
126
+ x = tf.keras.activations.swish(x)
127
+
128
+ return x
129
+
130
+ def res_block_disc(self, inp, filters, kernel_size=(1, 3), kernel_size_2=None, strides=(1, 1), name="0"):
131
+
132
+ if kernel_size_2 is None:
133
+ kernel_size_2 = kernel_size
134
+
135
+ x = tf.keras.layers.Conv2D(
136
+ inp.shape[-1],
137
+ kernel_size=kernel_size_2,
138
+ strides=1,
139
+ activation="linear",
140
+ padding="same",
141
+ kernel_initializer=self.init,
142
+ name=name + "c0",
143
+ )(inp)
144
+ x = tf.keras.layers.LeakyReLU(0.2)(x)
145
+ x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
146
+ x = tf.keras.layers.Conv2D(
147
+ filters,
148
+ kernel_size=kernel_size,
149
+ strides=strides,
150
+ activation="linear",
151
+ padding="same",
152
+ kernel_initializer=self.init,
153
+ name=name + "c1",
154
+ )(x)
155
+ x = tf.keras.layers.LeakyReLU(0.2)(x)
156
+ x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
157
+
158
+ if strides != (1, 1):
159
+ inp = tf.keras.layers.AveragePooling2D(strides, padding="same")(inp)
160
+
161
+ if inp.shape[-1] != filters:
162
+ inp = tf.keras.layers.Conv2D(
163
+ filters,
164
+ kernel_size=1,
165
+ strides=1,
166
+ activation="linear",
167
+ padding="same",
168
+ kernel_initializer=self.init,
169
+ use_bias=False,
170
+ name=name + "c3",
171
+ )(inp)
172
+
173
+ return x + inp
174
+
175
+ def build_encoder2(self):
176
+
177
+ inpf = tf.keras.layers.Input((1, self.args.shape, self.args.hop // 4))
178
+
179
+ inpfls = tf.split(inpf, 8, -2)
180
+ inpb = tf.concat(inpfls, 0)
181
+
182
+ g0 = self.conv_util(inpb, self.args.hop, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False)
183
+ g1 = self.conv_util(
184
+ g0, self.args.hop + self.args.hop // 2, kernel_size=(1, 3), strides=(1, 2), padding="valid", bnorm=False
185
+ )
186
+ g2 = self.conv_util(
187
+ g1, self.args.hop + self.args.hop // 2, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False
188
+ )
189
+ g3 = self.conv_util(g2, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 2), padding="valid", bnorm=False)
190
+ g4 = self.conv_util(g3, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 1), padding="same", bnorm=False)
191
+ g5 = self.conv_util(g4, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), padding="valid", bnorm=False)
192
+ g5 = self.conv_util(g5, self.args.hop * 3, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
193
+
194
+ g = tf.keras.layers.Conv2D(
195
+ self.args.latdepth,
196
+ kernel_size=(1, 1),
197
+ strides=1,
198
+ padding="valid",
199
+ kernel_initializer=self.init,
200
+ name="cbottle",
201
+ activation="tanh",
202
+ )(g5)
203
+
204
+ gls = tf.split(g, 8, 0)
205
+ g = tf.concat(gls, -2)
206
+ gls = tf.split(g, 2, -2)
207
+ g = tf.concat(gls, 0)
208
+
209
+ gf = tf.cast(g, tf.float32)
210
+
211
+ return tf.keras.Model(inpf, gf, name="ENC2")
212
+
213
+ def build_decoder2(self):
214
+
215
+ inpf = tf.keras.layers.Input((1, self.args.shape // 32, self.args.latdepth))
216
+
217
+ g = inpf
218
+
219
+ g = self.conv_util(
220
+ g, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), upsample=False, noise=True, bnorm=False
221
+ )
222
+ g = self.conv_util(
223
+ g,
224
+ self.args.hop * 2 + self.args.hop // 2,
225
+ kernel_size=(1, 4),
226
+ strides=(1, 2),
227
+ upsample=True,
228
+ noise=True,
229
+ bnorm=False,
230
+ )
231
+ g = self.conv_util(
232
+ g,
233
+ self.args.hop * 2 + self.args.hop // 2,
234
+ kernel_size=(1, 3),
235
+ strides=(1, 1),
236
+ upsample=False,
237
+ noise=True,
238
+ bnorm=False,
239
+ )
240
+ g = self.conv_util(
241
+ g, self.args.hop * 2, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
242
+ )
243
+ g = self.conv_util(
244
+ g, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 1), upsample=False, noise=True, bnorm=False
245
+ )
246
+ g = self.conv_util(
247
+ g,
248
+ self.args.hop + self.args.hop // 2,
249
+ kernel_size=(1, 4),
250
+ strides=(1, 2),
251
+ upsample=True,
252
+ noise=True,
253
+ bnorm=False,
254
+ )
255
+ g = self.conv_util(g, self.args.hop, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False)
256
+
257
+ gf = tf.keras.layers.Conv2D(
258
+ self.args.hop // 4, kernel_size=(1, 1), strides=1, padding="same", kernel_initializer=self.init, name="cout"
259
+ )(g)
260
+
261
+ gfls = tf.split(gf, 2, 0)
262
+ gf = tf.concat(gfls, -2)
263
+
264
+ gf = tf.cast(gf, tf.float32)
265
+
266
+ return tf.keras.Model(inpf, gf, name="DEC2")
267
+
268
+ def build_encoder(self):
269
+
270
+ dim = ((4 * self.args.hop) // 2) + 1
271
+
272
+ inpf = tf.keras.layers.Input((dim, self.args.shape, 1))
273
+
274
+ ginp = tf.transpose(inpf, [0, 3, 2, 1])
275
+
276
+ g0 = self.conv_util(ginp, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
277
+ g1 = self.conv_util(g0, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
278
+ g2 = self.conv_util(g1, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
279
+ g4 = self.conv_util(g2, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
280
+ g5 = self.conv_util(g4, self.args.hop * 4, kernel_size=(1, 1), strides=(1, 1), padding="valid", bnorm=False)
281
+
282
+ g = tf.keras.layers.Conv2D(
283
+ self.args.hop // 4, kernel_size=(1, 1), strides=1, padding="valid", kernel_initializer=self.init
284
+ )(g5)
285
+
286
+ g = tf.keras.activations.tanh(g)
287
+
288
+ gls = tf.split(g, 2, -2)
289
+ g = tf.concat(gls, 0)
290
+
291
+ gf = tf.cast(g, tf.float32)
292
+
293
+ return tf.keras.Model(inpf, gf, name="ENC")
294
+
295
+ def build_decoder(self):
296
+
297
+ dim = ((4 * self.args.hop) // 2) + 1
298
+
299
+ inpf = tf.keras.layers.Input((1, self.args.shape // 2, self.args.hop // 4))
300
+
301
+ g = inpf
302
+
303
+ g0 = self.conv_util(g, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 1), noise=True, bnorm=False)
304
+ g1 = self.conv_util(g0, self.args.hop * 3, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
305
+ g2 = self.conv_util(g1, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
306
+ g3 = self.conv_util(g2, self.args.hop, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
307
+ g = self.conv_util(g3, self.args.hop, kernel_size=(1, 3), strides=(1, 2), noise=True, bnorm=False)
308
+
309
+ g33 = self.conv_util(
310
+ g, self.args.hop, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
311
+ )
312
+ g22 = self.conv_util(
313
+ g3, self.args.hop * 2, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
314
+ )
315
+ g11 = self.conv_util(
316
+ g22 + g2, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
317
+ )
318
+ g00 = self.conv_util(
319
+ g11 + g1, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
320
+ )
321
+
322
+ g = tf.keras.layers.Conv2D(
323
+ dim, kernel_size=(1, 1), strides=(1, 1), kernel_initializer=self.init, padding="same"
324
+ )(g00 + g0)
325
+ gf = tf.clip_by_value(g, -1.0, 1.0)
326
+
327
+ g = self.conv_util(
328
+ g22, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
329
+ )
330
+ g = self.conv_util(
331
+ g + g11, self.args.hop * 3, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True, bnorm=False
332
+ )
333
+ g = tf.keras.layers.Conv2D(
334
+ dim, kernel_size=(1, 1), strides=(1, 1), kernel_initializer=self.init, padding="same"
335
+ )(g + g00)
336
+ pf = tf.clip_by_value(g, -1.0, 1.0)
337
+
338
+ gfls = tf.split(gf, self.args.shape // self.args.window, 0)
339
+ gf = tf.concat(gfls, -2)
340
+
341
+ pfls = tf.split(pf, self.args.shape // self.args.window, 0)
342
+ pf = tf.concat(pfls, -2)
343
+
344
+ s = tf.transpose(gf, [0, 2, 3, 1])
345
+ p = tf.transpose(pf, [0, 2, 3, 1])
346
+
347
+ s = tf.cast(tf.squeeze(s, -1), tf.float32)
348
+ p = tf.cast(tf.squeeze(p, -1), tf.float32)
349
+
350
+ return tf.keras.Model(inpf, [s, p], name="DEC")
351
+
352
+ def build_critic(self):
353
+
354
+ sinp = tf.keras.layers.Input(shape=(1, self.args.latlen, self.args.latdepth * 2))
355
+
356
+ sf = tf.keras.layers.Conv2D(
357
+ self.args.base_channels * 3,
358
+ kernel_size=(1, 4),
359
+ strides=(1, 2),
360
+ activation="linear",
361
+ padding="same",
362
+ kernel_initializer=self.init,
363
+ name="1c",
364
+ )(sinp)
365
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
366
+
367
+ sf = self.res_block_disc(sf, self.args.base_channels * 4, kernel_size=(1, 4), strides=(1, 2), name="2")
368
+
369
+ sf = self.res_block_disc(sf, self.args.base_channels * 5, kernel_size=(1, 4), strides=(1, 2), name="3")
370
+
371
+ sf = self.res_block_disc(sf, self.args.base_channels * 6, kernel_size=(1, 4), strides=(1, 2), name="4")
372
+
373
+ sf = self.res_block_disc(sf, self.args.base_channels * 7, kernel_size=(1, 4), strides=(1, 2), name="5")
374
+
375
+ if not self.args.small:
376
+ sf = self.res_block_disc(
377
+ sf, self.args.base_channels * 7, kernel_size=(1, 4), strides=(1, 2), kernel_size_2=(1, 1), name="6"
378
+ )
379
+
380
+ sf = tf.keras.layers.Conv2D(
381
+ self.args.base_channels * 7,
382
+ kernel_size=(1, 3),
383
+ strides=(1, 1),
384
+ activation="linear",
385
+ padding="same",
386
+ kernel_initializer=self.init,
387
+ name="7c",
388
+ )(sf)
389
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
390
+
391
+ gf = tf.keras.layers.Dense(1, activation="linear", use_bias=True, kernel_initializer=self.init, name="7d")(
392
+ tf.keras.layers.Flatten()(sf)
393
+ )
394
+
395
+ gf = tf.cast(gf, tf.float32)
396
+
397
+ return tf.keras.Model(sinp, gf, name="C")
398
+
399
+ def build_generator(self):
400
+
401
+ dim = self.args.latdepth * 2
402
+
403
+ inpf = tf.keras.layers.Input((self.args.latlen, self.args.latdepth * 2))
404
+
405
+ inpfls = tf.split(inpf, 2, -2)
406
+ inpb = tf.concat(inpfls, 0)
407
+
408
+ inpg = tf.reduce_mean(inpb, -2)
409
+ inp1 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(tf.expand_dims(inpb, -3))
410
+ inp2 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp1)
411
+ inp3 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp2)
412
+ inp4 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp3)
413
+ inp5 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp4)
414
+ if not self.args.small:
415
+ inp6 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp5)
416
+
417
+ if not self.args.small:
418
+ g = tf.keras.layers.Dense(
419
+ 4 * (self.args.base_channels * 7),
420
+ activation="linear",
421
+ use_bias=True,
422
+ kernel_initializer=self.init,
423
+ name="00d",
424
+ )(tf.keras.layers.Flatten()(inp6))
425
+ g = tf.keras.layers.Reshape((1, 4, self.args.base_channels * 7))(g)
426
+ g = AddNoise(self.args.datatype, name="00n")(g)
427
+ g = self.adain(g, inp5, name="00ai")
428
+ g = tf.keras.activations.swish(g)
429
+ else:
430
+ g = tf.keras.layers.Dense(
431
+ 4 * (self.args.base_channels * 7),
432
+ activation="linear",
433
+ use_bias=True,
434
+ kernel_initializer=self.init,
435
+ name="00d",
436
+ )(tf.keras.layers.Flatten()(inp5))
437
+ g = tf.keras.layers.Reshape((1, 4, self.args.base_channels * 7))(g)
438
+ g = AddNoise(self.args.datatype, name="00n")(g)
439
+ g = self.adain(g, inp4, name="00ai")
440
+ g = tf.keras.activations.swish(g)
441
+
442
+ if not self.args.small:
443
+ g1 = self.conv_util_gen(
444
+ g,
445
+ self.args.base_channels * 6,
446
+ kernel_size=(1, 4),
447
+ strides=(1, 2),
448
+ upsample=True,
449
+ noise=True,
450
+ emb=inp4,
451
+ name="0",
452
+ )
453
+ g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
454
+ g1 = self.conv_util_gen(
455
+ g1,
456
+ self.args.base_channels * 6,
457
+ kernel_size=(1, 4),
458
+ strides=(1, 1),
459
+ upsample=False,
460
+ noise=True,
461
+ emb=inp4,
462
+ name="1",
463
+ )
464
+ g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
465
+ g1 = g1 + tf.keras.layers.Conv2D(
466
+ g1.shape[-1],
467
+ kernel_size=(1, 1),
468
+ strides=1,
469
+ activation="linear",
470
+ padding="same",
471
+ kernel_initializer=self.init,
472
+ use_bias=True,
473
+ name="res1c",
474
+ )(self.pixel_shuffle(g))
475
+ else:
476
+ g1 = self.conv_util_gen(
477
+ g,
478
+ self.args.base_channels * 6,
479
+ kernel_size=(1, 1),
480
+ strides=(1, 1),
481
+ upsample=False,
482
+ noise=True,
483
+ emb=inp4,
484
+ name="0_small",
485
+ )
486
+ g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
487
+ g1 = self.conv_util_gen(
488
+ g1,
489
+ self.args.base_channels * 6,
490
+ kernel_size=(1, 1),
491
+ strides=(1, 1),
492
+ upsample=False,
493
+ noise=True,
494
+ emb=inp4,
495
+ name="1_small",
496
+ )
497
+ g1 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g1
498
+ g1 = g1 + tf.keras.layers.Conv2D(
499
+ g1.shape[-1],
500
+ kernel_size=(1, 1),
501
+ strides=1,
502
+ activation="linear",
503
+ padding="same",
504
+ kernel_initializer=self.init,
505
+ use_bias=True,
506
+ name="res1c_small",
507
+ )(g)
508
+
509
+ g2 = self.conv_util_gen(
510
+ g1,
511
+ self.args.base_channels * 5,
512
+ kernel_size=(1, 4),
513
+ strides=(1, 2),
514
+ upsample=True,
515
+ noise=True,
516
+ emb=inp3,
517
+ name="2",
518
+ )
519
+ g2 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g2
520
+ g2 = self.conv_util_gen(
521
+ g2,
522
+ self.args.base_channels * 5,
523
+ kernel_size=(1, 4),
524
+ strides=(1, 1),
525
+ upsample=False,
526
+ noise=True,
527
+ emb=inp3,
528
+ name="3",
529
+ )
530
+ g2 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g2
531
+ g2 = g2 + tf.keras.layers.Conv2D(
532
+ g2.shape[-1],
533
+ kernel_size=(1, 1),
534
+ strides=1,
535
+ activation="linear",
536
+ padding="same",
537
+ kernel_initializer=self.init,
538
+ use_bias=True,
539
+ name="res2c",
540
+ )(self.pixel_shuffle(g1))
541
+
542
+ g3 = self.conv_util_gen(
543
+ g2,
544
+ self.args.base_channels * 4,
545
+ kernel_size=(1, 4),
546
+ strides=(1, 2),
547
+ upsample=True,
548
+ noise=True,
549
+ emb=inp2,
550
+ name="4",
551
+ )
552
+ g3 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g3
553
+ g3 = self.conv_util_gen(
554
+ g3,
555
+ self.args.base_channels * 4,
556
+ kernel_size=(1, 4),
557
+ strides=(1, 1),
558
+ upsample=False,
559
+ noise=True,
560
+ emb=inp2,
561
+ name="5",
562
+ )
563
+ g3 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g3
564
+ g3 = g3 + tf.keras.layers.Conv2D(
565
+ g3.shape[-1],
566
+ kernel_size=(1, 1),
567
+ strides=1,
568
+ activation="linear",
569
+ padding="same",
570
+ kernel_initializer=self.init,
571
+ use_bias=True,
572
+ name="res3c",
573
+ )(self.pixel_shuffle(g2))
574
+
575
+ g4 = self.conv_util_gen(
576
+ g3,
577
+ self.args.base_channels * 3,
578
+ kernel_size=(1, 4),
579
+ strides=(1, 2),
580
+ upsample=True,
581
+ noise=True,
582
+ emb=inp1,
583
+ name="6",
584
+ )
585
+ g4 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g4
586
+ g4 = self.conv_util_gen(
587
+ g4,
588
+ self.args.base_channels * 3,
589
+ kernel_size=(1, 4),
590
+ strides=(1, 1),
591
+ upsample=False,
592
+ noise=True,
593
+ emb=inp1,
594
+ name="7",
595
+ )
596
+ g4 = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * g4
597
+ g4 = g4 + tf.keras.layers.Conv2D(
598
+ g4.shape[-1],
599
+ kernel_size=(1, 1),
600
+ strides=1,
601
+ activation="linear",
602
+ padding="same",
603
+ kernel_initializer=self.init,
604
+ use_bias=True,
605
+ name="res4c",
606
+ )(self.pixel_shuffle(g3))
607
+
608
+ g5 = self.conv_util_gen(
609
+ g4,
610
+ self.args.base_channels * 2,
611
+ kernel_size=(1, 4),
612
+ strides=(1, 2),
613
+ upsample=True,
614
+ noise=True,
615
+ emb=tf.expand_dims(tf.cast(inpb, dtype=self.args.datatype), -3),
616
+ name="8",
617
+ )
618
+
619
+ gf = tf.keras.layers.Conv2D(
620
+ dim, kernel_size=(1, 4), strides=(1, 1), kernel_initializer=self.init, padding="same", name="9c"
621
+ )(g5)
622
+
623
+ gfls = tf.split(gf, 2, 0)
624
+ gf = tf.concat(gfls, -2)
625
+
626
+ gf = tf.cast(gf, tf.float32)
627
+
628
+ return tf.keras.Model(inpf, gf, name="GEN")
629
+
630
+ # Load past models from path to resume training or test
631
+ def load(self, path, load_dec=False):
632
+ gen = self.build_generator()
633
+ critic = self.build_critic()
634
+ enc = self.build_encoder()
635
+ dec = self.build_decoder()
636
+ enc2 = self.build_encoder2()
637
+ dec2 = self.build_decoder2()
638
+ gen_ema = self.build_generator()
639
+
640
+ switch = tf.Variable(-1.0, dtype=tf.float32)
641
+
642
+ if self.args.mixed_precision:
643
+ opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
644
+ opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
645
+ else:
646
+ opt_disc = tf.keras.optimizers.Adam(0.0001, 0.9)
647
+ opt_dec = tf.keras.optimizers.Adam(0.0001, 0.9)
648
+
649
+ if load_dec:
650
+ dec.load_weights(self.args.dec_path + "/dec.h5")
651
+ dec2.load_weights(self.args.dec_path + "/dec2.h5")
652
+ enc.load_weights(self.args.dec_path + "/enc.h5")
653
+ enc2.load_weights(self.args.dec_path + "/enc2.h5")
654
+
655
+ else:
656
+ grad_vars = critic.trainable_weights
657
+ zero_grads = [tf.zeros_like(w) for w in grad_vars]
658
+ opt_disc.apply_gradients(zip(zero_grads, grad_vars))
659
+
660
+ grad_vars = gen.trainable_variables
661
+ zero_grads = [tf.zeros_like(w) for w in grad_vars]
662
+ opt_dec.apply_gradients(zip(zero_grads, grad_vars))
663
+
664
+ if not self.args.testing:
665
+ opt_disc.set_weights(np.load(path + "/opt_disc.npy", allow_pickle=True))
666
+ opt_dec.set_weights(np.load(path + "/opt_dec.npy", allow_pickle=True))
667
+ critic.load_weights(path + "/critic.h5")
668
+ gen.load_weights(path + "/gen.h5")
669
+ switch = tf.Variable(float(np.load(path + "/switch.npy", allow_pickle=True)), dtype=tf.float32)
670
+
671
+ gen_ema.load_weights(path + "/gen_ema.h5")
672
+ dec.load_weights(self.args.dec_path + "/dec.h5")
673
+ dec2.load_weights(self.args.dec_path + "/dec2.h5")
674
+ enc.load_weights(self.args.dec_path + "/enc.h5")
675
+ enc2.load_weights(self.args.dec_path + "/enc2.h5")
676
+
677
+ return (
678
+ critic,
679
+ gen,
680
+ enc,
681
+ dec,
682
+ enc2,
683
+ dec2,
684
+ gen_ema,
685
+ [opt_dec, opt_disc],
686
+ switch,
687
+ )
688
+
689
+ def build(self):
690
+ gen = self.build_generator()
691
+ critic = self.build_critic()
692
+ enc = self.build_encoder()
693
+ dec = self.build_decoder()
694
+ enc2 = self.build_encoder2()
695
+ dec2 = self.build_decoder2()
696
+ gen_ema = self.build_generator()
697
+
698
+ switch = tf.Variable(-1.0, dtype=tf.float32)
699
+
700
+ gen_ema = tf.keras.models.clone_model(gen)
701
+ gen_ema.set_weights(gen.get_weights())
702
+
703
+ if self.args.mixed_precision:
704
+ opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
705
+ opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.5))
706
+ else:
707
+ opt_disc = tf.keras.optimizers.Adam(0.0001, 0.5)
708
+ opt_dec = tf.keras.optimizers.Adam(0.0001, 0.5)
709
+
710
+ return (
711
+ critic,
712
+ gen,
713
+ enc,
714
+ dec,
715
+ enc2,
716
+ dec2,
717
+ gen_ema,
718
+ [opt_dec, opt_disc],
719
+ switch,
720
+ )
721
+
722
+ def get_networks(self):
723
+ (
724
+ critic,
725
+ gen,
726
+ enc,
727
+ dec,
728
+ enc2,
729
+ dec2,
730
+ gen_ema_1,
731
+ [opt_dec, opt_disc],
732
+ switch,
733
+ ) = self.load(self.args.load_path_1, load_dec=False)
734
+ print(f"Networks loaded from {self.args.load_path_1}")
735
+
736
+ (
737
+ critic,
738
+ gen,
739
+ enc,
740
+ dec,
741
+ enc2,
742
+ dec2,
743
+ gen_ema_2,
744
+ [opt_dec, opt_disc],
745
+ switch,
746
+ ) = self.load(self.args.load_path_2, load_dec=False)
747
+ print(f"Networks loaded from {self.args.load_path_2}")
748
+
749
+ (
750
+ critic,
751
+ gen,
752
+ enc,
753
+ dec,
754
+ enc2,
755
+ dec2,
756
+ gen_ema_3,
757
+ [opt_dec, opt_disc],
758
+ switch,
759
+ ) = self.load(self.args.load_path_3, load_dec=False)
760
+ print(f"Networks loaded from {self.args.load_path_3}")
761
+
762
+ return (
763
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
764
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
765
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
766
+ )
767
+
768
+ def initialize_networks(self):
769
+
770
+ (
771
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
772
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
773
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
774
+ ) = self.get_networks()
775
+
776
+ print(f"Critic params: {count_params(critic.trainable_variables)}")
777
+ print(f"Generator params: {count_params(gen.trainable_variables)}")
778
+
779
+ return (
780
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch),
781
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch),
782
+ (critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch),
783
+ )
musika_test.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
4
+
5
+ from parse_test import parse_args
6
+ from models import Models_functions
7
+ from utils import Utils_functions
8
+
9
+ if __name__ == "__main__":
10
+
11
+ # parse args
12
+ args = parse_args()
13
+
14
+ # initialize networks
15
+ M = Models_functions(args)
16
+ models_ls_1, models_ls_2, models_ls_3 = M.get_networks()
17
+
18
+ # test musika
19
+ U = Utils_functions(args)
20
+ U.render_gradio(models_ls_1, models_ls_2, models_ls_3, train=False)
parse_test.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from typing import Any
3
+ import tensorflow as tf
4
+
5
+
6
+ class EasyDict(dict):
7
+ def __getattr__(self, name: str) -> Any:
8
+ try:
9
+ return self[name]
10
+ except KeyError:
11
+ raise AttributeError(name)
12
+
13
+ def __setattr__(self, name: str, value: Any) -> None:
14
+ self[name] = value
15
+
16
+ def __delattr__(self, name: str) -> None:
17
+ del self[name]
18
+
19
+
20
+ def str2bool(v):
21
+ if isinstance(v, bool):
22
+ return v
23
+ if v.lower() in ("yes", "true", "t", "y", "1"):
24
+ return True
25
+ elif v.lower() in ("no", "false", "f", "n", "0"):
26
+ return False
27
+ else:
28
+ raise argparse.ArgumentTypeError("Boolean value expected.")
29
+
30
+
31
+ def params_args(args):
32
+ parser = argparse.ArgumentParser()
33
+
34
+ parser.add_argument(
35
+ "--hop",
36
+ type=int,
37
+ default=256,
38
+ help="Hop size (window size = 4*hop)",
39
+ )
40
+ parser.add_argument(
41
+ "--mel_bins",
42
+ type=int,
43
+ default=256,
44
+ help="Mel bins in mel-spectrograms",
45
+ )
46
+ parser.add_argument(
47
+ "--sr",
48
+ type=int,
49
+ default=44100,
50
+ help="Sampling Rate",
51
+ )
52
+ parser.add_argument(
53
+ "--small",
54
+ type=str2bool,
55
+ default=False,
56
+ help="If True, use model with shorter available context, useful for small datasets",
57
+ )
58
+ parser.add_argument(
59
+ "--latdepth",
60
+ type=int,
61
+ default=64,
62
+ help="Depth of generated latent vectors",
63
+ )
64
+ parser.add_argument(
65
+ "--coorddepth",
66
+ type=int,
67
+ default=64,
68
+ help="Dimension of latent coordinate and style random vectors",
69
+ )
70
+ parser.add_argument(
71
+ "--base_channels",
72
+ type=int,
73
+ default=128,
74
+ help="Base channels for generator and discriminator architectures",
75
+ )
76
+ parser.add_argument(
77
+ "--shape",
78
+ type=int,
79
+ default=128,
80
+ help="Length of spectrograms time axis",
81
+ )
82
+ parser.add_argument(
83
+ "--window",
84
+ type=int,
85
+ default=64,
86
+ help="Generator spectrogram window (must divide shape)",
87
+ )
88
+ parser.add_argument(
89
+ "--mu_rescale",
90
+ type=float,
91
+ default=-25.0,
92
+ help="Spectrogram mu used to normalize",
93
+ )
94
+ parser.add_argument(
95
+ "--sigma_rescale",
96
+ type=float,
97
+ default=75.0,
98
+ help="Spectrogram sigma used to normalize",
99
+ )
100
+ parser.add_argument(
101
+ "--load_path_1",
102
+ type=str,
103
+ default="checkpoints/techno/",
104
+ help="Path of pretrained networks weights 1",
105
+ )
106
+ parser.add_argument(
107
+ "--load_path_2",
108
+ type=str,
109
+ default="checkpoints/metal/",
110
+ help="Path of pretrained networks weights 2",
111
+ )
112
+ parser.add_argument(
113
+ "--load_path_3",
114
+ type=str,
115
+ default="checkpoints/misc/",
116
+ help="Path of pretrained networks weights 3",
117
+ )
118
+ parser.add_argument(
119
+ "--dec_path",
120
+ type=str,
121
+ default="checkpoints/ae/",
122
+ help="Path of pretrained decoders weights",
123
+ )
124
+ parser.add_argument(
125
+ "--testing",
126
+ type=str2bool,
127
+ default=True,
128
+ help="True if optimizers weight do not need to be loaded",
129
+ )
130
+ parser.add_argument(
131
+ "--cpu",
132
+ type=str2bool,
133
+ default=False,
134
+ help="True if you wish to use cpu",
135
+ )
136
+ parser.add_argument(
137
+ "--mixed_precision",
138
+ type=str2bool,
139
+ default=True,
140
+ help="True if your GPU supports mixed precision",
141
+ )
142
+
143
+ tmp_args = parser.parse_args()
144
+
145
+ args.hop = tmp_args.hop
146
+ args.mel_bins = tmp_args.mel_bins
147
+ args.sr = tmp_args.sr
148
+ args.small = tmp_args.small
149
+ args.latdepth = tmp_args.latdepth
150
+ args.coorddepth = tmp_args.coorddepth
151
+ args.base_channels = tmp_args.base_channels
152
+ args.shape = tmp_args.shape
153
+ args.window = tmp_args.window
154
+ args.mu_rescale = tmp_args.mu_rescale
155
+ args.sigma_rescale = tmp_args.sigma_rescale
156
+ args.load_path_1 = tmp_args.load_path_1
157
+ args.load_path_2 = tmp_args.load_path_2
158
+ args.load_path_3 = tmp_args.load_path_3
159
+ args.dec_path = tmp_args.dec_path
160
+ args.testing = tmp_args.testing
161
+ args.cpu = tmp_args.cpu
162
+ args.mixed_precision = tmp_args.mixed_precision
163
+
164
+ if args.small:
165
+ args.latlen = 128
166
+ else:
167
+ args.latlen = 256
168
+ args.coordlen = (args.latlen // 2) * 3
169
+
170
+ print()
171
+
172
+ args.datatype = tf.float32
173
+ gpuls = tf.config.list_physical_devices("GPU")
174
+ if len(gpuls) == 0 or args.cpu:
175
+ args.cpu = True
176
+ args.mixed_precision = False
177
+ tf.config.set_visible_devices([], "GPU")
178
+ print()
179
+ print("Using CPU...")
180
+ print()
181
+ if args.mixed_precision:
182
+ args.datatype = tf.float16
183
+ print()
184
+ print("Using GPU with mixed precision enabled...")
185
+ print()
186
+ if not args.mixed_precision and not args.cpu:
187
+ print()
188
+ print("Using GPU without mixed precision...")
189
+ print()
190
+
191
+ return args
192
+
193
+
194
+ def parse_args():
195
+ args = EasyDict()
196
+ return params_args(args)
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file may be used to create an environment using:
2
+ # $ conda create --name <env> --file <this file>
3
+ # platform: linux-64
4
+ gradio==3.3.1
5
+ librosa==0.8.1
6
+ matplotlib==3.4.3
7
+ numpy==1.20.3
8
+ scipy==1.7.1
9
+ tensorboard==2.10.0
10
+ tensorflow==2.10.0
11
+ tqdm==4.62.3
12
+ pydub==0.25.1
utils.py ADDED
@@ -0,0 +1,689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import datetime
4
+ from glob import glob
5
+ from tqdm import tqdm
6
+ import librosa
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import tensorflow as tf
10
+ from tensorflow.python.framework import random_seed
11
+ import gradio as gr
12
+ from scipy.io.wavfile import write as write_wav
13
+
14
+
15
+ class Utils_functions:
16
+ def __init__(self, args):
17
+
18
+ self.args = args
19
+
20
+ melmat = tf.signal.linear_to_mel_weight_matrix(
21
+ num_mel_bins=args.mel_bins,
22
+ num_spectrogram_bins=(4 * args.hop * 2) // 2 + 1,
23
+ sample_rate=args.sr,
24
+ lower_edge_hertz=0.0,
25
+ upper_edge_hertz=args.sr // 2,
26
+ )
27
+ mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
28
+ enorm = tf.cast(
29
+ tf.expand_dims(
30
+ tf.constant(2.0 / (mel_f[2 : args.mel_bins + 2] - mel_f[: args.mel_bins])),
31
+ 0,
32
+ ),
33
+ tf.float32,
34
+ )
35
+ melmat = tf.multiply(melmat, enorm)
36
+ melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
37
+ self.melmat = tf.where(tf.math.is_nan(melmat), tf.zeros_like(melmat), melmat)
38
+
39
+ with np.errstate(divide="ignore", invalid="ignore"):
40
+ self.melmatinv = tf.constant(np.nan_to_num(np.divide(melmat.numpy().T, np.sum(melmat.numpy(), axis=1))).T)
41
+
42
+ def conc_tog_specphase(self, S, P):
43
+ S = tf.cast(S, tf.float32)
44
+ P = tf.cast(P, tf.float32)
45
+ S = self.denormalize(S, clip=False)
46
+ S = tf.math.sqrt(self.db2power(S) + 1e-7)
47
+ P = P * np.pi
48
+ Sls = tf.split(S, S.shape[0], 0)
49
+ S = tf.squeeze(tf.concat(Sls, 1), 0)
50
+ Pls = tf.split(P, P.shape[0], 0)
51
+ P = tf.squeeze(tf.concat(Pls, 1), 0)
52
+ SP = tf.cast(S, tf.complex64) * tf.math.exp(1j * tf.cast(P, tf.complex64))
53
+ wv = tf.signal.inverse_stft(
54
+ SP,
55
+ 4 * self.args.hop,
56
+ self.args.hop,
57
+ fft_length=4 * self.args.hop,
58
+ window_fn=tf.signal.inverse_stft_window_fn(self.args.hop),
59
+ )
60
+ return np.squeeze(wv)
61
+
62
+ def _tf_log10(self, x):
63
+ numerator = tf.math.log(x)
64
+ denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
65
+ return numerator / denominator
66
+
67
+ def normalize(self, S, clip=False):
68
+ S = (S - self.args.mu_rescale) / self.args.sigma_rescale
69
+ if clip:
70
+ S = tf.clip_by_value(S, -1.0, 1.0)
71
+ return S
72
+
73
+ def normalize_rel(self, S):
74
+ S = S - tf.math.reduce_min(S + 1e-7)
75
+ S = (S / (tf.math.reduce_max(S + 1e-7) + 1e-7)) + 1e-7
76
+ return S
77
+
78
+ def denormalize(self, S, clip=False):
79
+ if clip:
80
+ S = tf.clip_by_value(S, -1.0, 1.0)
81
+ return (S * self.args.sigma_rescale) + self.args.mu_rescale
82
+
83
+ def amp2db(self, x):
84
+ return 20 * self._tf_log10(tf.clip_by_value(tf.abs(x), 1e-5, 1e100))
85
+
86
+ def db2amp(self, x):
87
+ return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
88
+
89
+ def power2db(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
90
+ log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
91
+ log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
92
+ if top_db is not None:
93
+ log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
94
+ return log_spec
95
+
96
+ def power2db_batch(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
97
+ log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
98
+ log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
99
+ if top_db is not None:
100
+ log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec, [-2, -1], keepdims=True) - top_db)
101
+ return log_spec
102
+
103
+ def db2power(self, S_db, ref=1.0):
104
+ return ref * tf.math.pow(10.0, 0.1 * S_db)
105
+
106
+ def wv2mel(self, wv, topdb=80.0):
107
+ X = tf.signal.stft(
108
+ wv,
109
+ frame_length=4 * self.args.hop,
110
+ frame_step=self.args.hop,
111
+ fft_length=4 * self.args.hop,
112
+ window_fn=tf.signal.hann_window,
113
+ pad_end=False,
114
+ )
115
+ S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb) - self.args.ref_level_db)
116
+ SM = tf.tensordot(S, self.melmat, 1)
117
+ return SM
118
+
119
+ def mel2spec(self, SM):
120
+ return tf.tensordot(SM, tf.transpose(self.melmatinv), 1)
121
+
122
+ def spec2mel(self, S):
123
+ return tf.tensordot(S, self.melmat, 1)
124
+
125
+ def wv2spec(self, wv, hop_size=256, fac=4):
126
+ X = tf.signal.stft(
127
+ wv,
128
+ frame_length=fac * hop_size,
129
+ frame_step=hop_size,
130
+ fft_length=fac * hop_size,
131
+ window_fn=tf.signal.hann_window,
132
+ pad_end=False,
133
+ )
134
+ return self.normalize(self.power2db(tf.abs(X) ** 2, top_db=None))
135
+
136
+ def wv2spec_hop(self, wv, topdb=80.0, hopsize=256):
137
+ X = tf.signal.stft(
138
+ wv,
139
+ frame_length=4 * hopsize,
140
+ frame_step=hopsize,
141
+ fft_length=4 * hopsize,
142
+ window_fn=tf.signal.hann_window,
143
+ pad_end=False,
144
+ )
145
+ S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
146
+ return tf.tensordot(S, self.melmat, 1)
147
+
148
+ def rand_channel_swap(self, x):
149
+ s_l, s_r = tf.split(x, 2, -1)
150
+ if tf.random.uniform((), dtype=tf.float32) > 0.5:
151
+ sl = s_l
152
+ sr = s_r
153
+ else:
154
+ sl = s_r
155
+ sr = s_l
156
+ return tf.concat([sl, sr], -1)
157
+
158
+ def distribute(self, x, model, bs=32, dual_out=False):
159
+ outls = []
160
+ if isinstance(x, list):
161
+ bdim = x[0].shape[0]
162
+ for i in range(((bdim - 2) // bs) + 1):
163
+ outls.append(model([el[i * bs : i * bs + bs] for el in x], training=False))
164
+ else:
165
+ bdim = x.shape[0]
166
+ for i in range(((bdim - 2) // bs) + 1):
167
+ outls.append(model(x[i * bs : i * bs + bs], training=False))
168
+
169
+ if dual_out:
170
+ return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
171
+ [outls[k][1] for k in range(len(outls))], 0
172
+ )
173
+ else:
174
+ return np.concatenate(outls, 0)
175
+
176
+ def distribute_enc(self, x, model, bs=32):
177
+ outls = []
178
+ if isinstance(x, list):
179
+ bdim = x[0].shape[0]
180
+ for i in range(((bdim - 2) // bs) + 1):
181
+ res = model([el[i * bs : i * bs + bs] for el in x], training=False)
182
+ resls = tf.split(res, self.args.shape // self.args.window, 0)
183
+ res = tf.concat(resls, -2)
184
+ outls.append(res)
185
+ else:
186
+ bdim = x.shape[0]
187
+ for i in range(((bdim - 2) // bs) + 1):
188
+ res = model(x[i * bs : i * bs + bs], training=False)
189
+ resls = tf.split(res, self.args.shape // self.args.window, 0)
190
+ res = tf.concat(resls, -2)
191
+ outls.append(res)
192
+
193
+ return tf.concat(outls, 0)
194
+
195
+ def distribute_dec(self, x, model, bs=32):
196
+ outls = []
197
+ bdim = x.shape[0]
198
+ for i in range(((bdim - 2) // bs) + 1):
199
+ inp = x[i * bs : i * bs + bs]
200
+ inpls = tf.split(inp, 2, -2)
201
+ inp = tf.concat(inpls, 0)
202
+ res = model(inp, training=False)
203
+ outls.append(res)
204
+ return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
205
+ [outls[k][1] for k in range(len(outls))], 0
206
+ )
207
+
208
+ def distribute_dec2(self, x, model, bs=32):
209
+ outls = []
210
+ bdim = x.shape[0]
211
+ for i in range(((bdim - 2) // bs) + 1):
212
+ inp1 = x[i * bs : i * bs + bs]
213
+ inpls = tf.split(inp1, 2, -2)
214
+ inp1 = tf.concat(inpls, 0)
215
+ outls.append(model(inp1, training=False))
216
+
217
+ return tf.concat(outls, 0)
218
+
219
+ def center_coordinate(
220
+ self, x
221
+ ): # allows to have sequences with even number length with anchor in the middle of the sequence
222
+ return tf.reduce_mean(tf.stack([x, tf.roll(x, -1, -2)], 0), 0)[:, :-1, :]
223
+
224
+ # hardcoded! need to figure out how to generalize it without breaking jit compiling
225
+ def crop_coordinate(
226
+ self, x
227
+ ): # randomly crops a conditioning sequence such that the anchor vector is at center of generator receptive field (maximum context is provided to the generator)
228
+ fac = tf.random.uniform((), 0, self.args.coordlen // (self.args.latlen // 2), dtype=tf.int32)
229
+ if fac == 0:
230
+ return tf.reshape(
231
+ x[
232
+ :,
233
+ (self.args.latlen // 4)
234
+ + 0 * (self.args.latlen // 2) : (self.args.latlen // 4)
235
+ + 0 * (self.args.latlen // 2)
236
+ + self.args.latlen,
237
+ :,
238
+ ],
239
+ [-1, self.args.latlen, x.shape[-1]],
240
+ )
241
+ elif fac == 1:
242
+ return tf.reshape(
243
+ x[
244
+ :,
245
+ (self.args.latlen // 4)
246
+ + 1 * (self.args.latlen // 2) : (self.args.latlen // 4)
247
+ + 1 * (self.args.latlen // 2)
248
+ + self.args.latlen,
249
+ :,
250
+ ],
251
+ [-1, self.args.latlen, x.shape[-1]],
252
+ )
253
+ else:
254
+ return tf.reshape(
255
+ x[
256
+ :,
257
+ (self.args.latlen // 4)
258
+ + 2 * (self.args.latlen // 2) : (self.args.latlen // 4)
259
+ + 2 * (self.args.latlen // 2)
260
+ + self.args.latlen,
261
+ :,
262
+ ],
263
+ [-1, self.args.latlen, x.shape[-1]],
264
+ )
265
+
266
+ def update_switch(self, switch, ca, cab, learning_rate_switch=0.0001, stable_point=0.9):
267
+ cert = tf.math.minimum(tf.math.maximum(tf.reduce_mean(ca) - tf.reduce_mean(cab), 0.0), 2.0) / 2.0
268
+
269
+ if cert > stable_point:
270
+ switch_new = switch - learning_rate_switch
271
+ else:
272
+ switch_new = switch + learning_rate_switch
273
+ return tf.math.maximum(tf.math.minimum(switch_new, 0.0), -1.0)
274
+
275
+ def get_noise_interp(self):
276
+ noiseg = tf.random.normal([1, 64], dtype=tf.float32)
277
+
278
+ noisel = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
279
+ noisec = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
280
+ noiser = tf.concat([tf.random.normal([1, self.args.coorddepth], dtype=tf.float32), noiseg], -1)
281
+
282
+ rl = tf.linspace(noisel, noisec, self.args.coordlen + 1, axis=-2)[:, :-1, :]
283
+ rr = tf.linspace(noisec, noiser, self.args.coordlen + 1, axis=-2)
284
+
285
+ noisetot = tf.concat([rl, rr], -2)
286
+ noisetot = self.center_coordinate(noisetot)
287
+ return self.crop_coordinate(noisetot)
288
+
289
+ def generate_example_stereo(self, models_ls):
290
+ (
291
+ critic,
292
+ gen,
293
+ enc,
294
+ dec,
295
+ enc2,
296
+ dec2,
297
+ gen_ema,
298
+ [opt_dec, opt_disc],
299
+ switch,
300
+ ) = models_ls
301
+ abb = gen_ema(self.get_noise_interp(), training=False)
302
+ abbls = tf.split(abb, abb.shape[-2] // 8, -2)
303
+ abb = tf.concat(abbls, 0)
304
+
305
+ chls = []
306
+ for channel in range(2):
307
+
308
+ ab = self.distribute_dec2(
309
+ abb[
310
+ :,
311
+ :,
312
+ :,
313
+ channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth,
314
+ ],
315
+ dec2,
316
+ )
317
+ abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
318
+ ab = tf.concat(abls, 0)
319
+ ab_m, ab_p = self.distribute_dec(ab, dec)
320
+ wv = self.conc_tog_specphase(ab_m, ab_p)
321
+ chls.append(wv)
322
+
323
+ return np.stack(chls, -1)
324
+
325
+ # Save in training loop
326
+ def save_test_image_full(self, path, models_ls=None):
327
+
328
+ abwv = self.generate_example_stereo(models_ls)
329
+ abwv2 = self.generate_example_stereo(models_ls)
330
+ abwv3 = self.generate_example_stereo(models_ls)
331
+ abwv4 = self.generate_example_stereo(models_ls)
332
+
333
+ # IPython.display.display(
334
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv)), rate=self.args.sr)
335
+ # )
336
+ # IPython.display.display(
337
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv2)), rate=self.args.sr)
338
+ # )
339
+ # IPython.display.display(
340
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv3)), rate=self.args.sr)
341
+ # )
342
+ # IPython.display.display(
343
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv4)), rate=self.args.sr)
344
+ # )
345
+
346
+ write_wav(f"{path}/out1.wav", self.args.sr, np.squeeze(abwv))
347
+ write_wav(f"{path}/out2.wav", self.args.sr, np.squeeze(abwv2))
348
+ write_wav(f"{path}/out3.wav", self.args.sr, np.squeeze(abwv3))
349
+ write_wav(f"{path}/out4.wav", self.args.sr, np.squeeze(abwv4))
350
+
351
+ fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
352
+ axs[0].imshow(
353
+ np.flip(
354
+ np.array(
355
+ tf.transpose(
356
+ self.wv2spec_hop((abwv[:, 0] + abwv[:, 1]) / 2.0, 80.0, self.args.hop * 2),
357
+ [1, 0],
358
+ )
359
+ ),
360
+ -2,
361
+ ),
362
+ cmap=None,
363
+ )
364
+ axs[0].axis("off")
365
+ axs[0].set_title("Generated1")
366
+ axs[1].imshow(
367
+ np.flip(
368
+ np.array(
369
+ tf.transpose(
370
+ self.wv2spec_hop((abwv2[:, 0] + abwv2[:, 1]) / 2.0, 80.0, self.args.hop * 2),
371
+ [1, 0],
372
+ )
373
+ ),
374
+ -2,
375
+ ),
376
+ cmap=None,
377
+ )
378
+ axs[1].axis("off")
379
+ axs[1].set_title("Generated2")
380
+ axs[2].imshow(
381
+ np.flip(
382
+ np.array(
383
+ tf.transpose(
384
+ self.wv2spec_hop((abwv3[:, 0] + abwv3[:, 1]) / 2.0, 80.0, self.args.hop * 2),
385
+ [1, 0],
386
+ )
387
+ ),
388
+ -2,
389
+ ),
390
+ cmap=None,
391
+ )
392
+ axs[2].axis("off")
393
+ axs[2].set_title("Generated3")
394
+ axs[3].imshow(
395
+ np.flip(
396
+ np.array(
397
+ tf.transpose(
398
+ self.wv2spec_hop((abwv4[:, 0] + abwv4[:, 1]) / 2.0, 80.0, self.args.hop * 2),
399
+ [1, 0],
400
+ )
401
+ ),
402
+ -2,
403
+ ),
404
+ cmap=None,
405
+ )
406
+ axs[3].axis("off")
407
+ axs[3].set_title("Generated4")
408
+ # plt.show()
409
+ plt.savefig(f"{path}/output.png")
410
+ plt.close()
411
+
412
+ def save_end(
413
+ self,
414
+ epoch,
415
+ gloss,
416
+ closs,
417
+ mloss,
418
+ models_ls=None,
419
+ n_save=3,
420
+ save_path="checkpoints",
421
+ ):
422
+ (critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch) = models_ls
423
+ if epoch % n_save == 0:
424
+ print("Saving...")
425
+ path = f"{save_path}/MUSIKA_iterations-{((epoch+1)*self.args.totsamples)//(self.args.bs*1000)}k_losses-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}"
426
+ os.mkdir(path)
427
+ critic.save_weights(path + "/critic.h5")
428
+ gen.save_weights(path + "/gen.h5")
429
+ gen_ema.save_weights(path + "/gen_ema.h5")
430
+ # enc.save_weights(path + "/enc.h5")
431
+ # dec.save_weights(path + "/dec.h5")
432
+ # enc2.save_weights(path + "/enc2.h5")
433
+ # dec2.save_weights(path + "/dec2.h5")
434
+ np.save(path + "/opt_dec.npy", opt_dec.get_weights())
435
+ np.save(path + "/opt_disc.npy", opt_disc.get_weights())
436
+ np.save(path + "/switch.npy", switch.numpy())
437
+ self.save_test_image_full(path, models_ls=models_ls)
438
+
439
+ def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
440
+ seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
441
+ return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)
442
+
443
+ def distribute_gen(self, x, model, bs=32):
444
+ outls = []
445
+ bdim = x.shape[0]
446
+ if bdim == 1:
447
+ bdim = 2
448
+ for i in range(((bdim - 2) // bs) + 1):
449
+ outls.append(model(x[i * bs : i * bs + bs], training=False))
450
+ return tf.concat(outls, 0)
451
+
452
+ def generate_waveform(self, inp, gen_ema, dec, dec2, batch_size=64):
453
+
454
+ ab = self.distribute_gen(inp, gen_ema, bs=batch_size)
455
+ abls = tf.split(ab, ab.shape[0], 0)
456
+ ab = tf.concat(abls, -2)
457
+ abls = tf.split(ab, ab.shape[-2] // 8, -2)
458
+ abi = tf.concat(abls, 0)
459
+
460
+ chls = []
461
+ for channel in range(2):
462
+
463
+ ab = self.distribute_dec2(
464
+ abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
465
+ dec2,
466
+ bs=batch_size,
467
+ )
468
+ abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
469
+ ab = tf.concat(abls, 0)
470
+
471
+ ab_m, ab_p = self.distribute_dec(ab, dec, bs=batch_size)
472
+ abwv = self.conc_tog_specphase(ab_m, ab_p)
473
+ chls.append(abwv)
474
+
475
+ return np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
476
+
477
+ def decode_waveform(self, lat, dec, dec2, batch_size=64):
478
+
479
+ lat = lat[:, :, : (lat.shape[-2] // 8) * 8, :]
480
+ abls = tf.split(lat, lat.shape[-2] // 8, -2)
481
+ abi = tf.concat(abls, 0)
482
+
483
+ chls = []
484
+ for channel in range(2):
485
+
486
+ ab = self.distribute_dec2(
487
+ abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
488
+ dec2,
489
+ bs=batch_size,
490
+ )
491
+ abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
492
+ ab = tf.concat(abls, 0)
493
+
494
+ ab_m, ab_p = self.distribute_dec(ab, dec, bs=batch_size)
495
+ abwv = self.conc_tog_specphase(ab_m, ab_p)
496
+ chls.append(abwv)
497
+
498
+ return np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
499
+
500
+ def get_noise_interp_multi(self, fac=1, var=2.0):
501
+ noiseg = self.truncated_normal([1, self.args.coorddepth], var, dtype=tf.float32)
502
+
503
+ coordratio = self.args.coordlen // self.args.latlen
504
+
505
+ noisels = [
506
+ tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1)
507
+ for i in range(3 + ((fac - 1) // coordratio))
508
+ ]
509
+ rls = tf.concat(
510
+ [
511
+ tf.linspace(noisels[k], noisels[k + 1], self.args.coordlen + 1, axis=-2)[:, :-1, :]
512
+ for k in range(len(noisels) - 1)
513
+ ],
514
+ -2,
515
+ )
516
+
517
+ rls = self.center_coordinate(rls)
518
+ rls = rls[:, self.args.latlen // 4 :, :]
519
+ rls = rls[:, : (rls.shape[-2] // self.args.latlen) * self.args.latlen, :]
520
+
521
+ rls = tf.split(rls, rls.shape[-2] // self.args.latlen, -2)
522
+
523
+ return tf.concat(rls[:fac], 0)
524
+
525
+ def get_noise_interp_loop(self, fac=1, var=2.0):
526
+ noiseg = self.truncated_normal([1, self.args.coorddepth], var, dtype=tf.float32)
527
+
528
+ coordratio = self.args.coordlen // self.args.latlen
529
+
530
+ noisels_pre = [tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1) for i in range(2)]
531
+ noisels = []
532
+ for k in range(fac + 2):
533
+ noisels.append(noisels_pre[0])
534
+ noisels.append(noisels_pre[1])
535
+ rls = tf.concat(
536
+ [
537
+ tf.linspace(noisels[k], noisels[k + 1], self.args.latlen // 2 + 1, axis=-2)[:, :-1, :]
538
+ for k in range(len(noisels) - 1)
539
+ ],
540
+ -2,
541
+ )
542
+
543
+ rls = self.center_coordinate(rls)
544
+ rls = rls[:, self.args.latlen // 2 :, :]
545
+ rls = rls[:, : (rls.shape[-2] // self.args.latlen) * self.args.latlen, :]
546
+
547
+ rls = tf.split(rls, rls.shape[-2] // self.args.latlen, -2)
548
+
549
+ return tf.concat(rls[:fac], 0)
550
+
551
+ def generate(self, models_ls):
552
+ critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch = models_ls
553
+ os.makedirs(self.args.save_path, exist_ok=True)
554
+ fac = (self.args.seconds // 23) + 1
555
+ print(f"Generating {self.args.num_samples} samples...")
556
+ for i in tqdm(range(self.args.num_samples)):
557
+ wv = self.generate_waveform(
558
+ self.get_noise_interp_multi(fac, self.args.truncation), gen_ema, dec, dec2, batch_size=64
559
+ )
560
+ dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
561
+ write_wav(
562
+ f"{self.args.save_path}/{i}_{dt}.wav", self.args.sr, np.squeeze(wv)[: self.args.seconds * self.args.sr]
563
+ )
564
+
565
+ def decode_path(self, models_ls):
566
+ critic, gen, enc, dec, enc2, dec2, gen_ema, [opt_dec, opt_disc], switch = models_ls
567
+ os.makedirs(self.args.save_path, exist_ok=True)
568
+ pathls = glob(self.args.files_path + "/*.npy")
569
+ print(f"Decoding {len(pathls)} samples...")
570
+ for p in tqdm(pathls):
571
+ tp, ext = os.path.splitext(p)
572
+ bname = os.path.basename(tp)
573
+ lat = np.load(p, allow_pickle=True)
574
+ lat = tf.expand_dims(lat, 0)
575
+ lat = tf.expand_dims(lat, 0)
576
+ wv = self.decode_waveform(lat, dec, dec2, batch_size=64)
577
+ # dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
578
+ write_wav(f"{self.args.save_path}/{bname}.wav", self.args.sr, np.squeeze(wv))
579
+
580
+ def stfunc(self, genre, z, var, models_ls_1, models_ls_2, models_ls_3):
581
+
582
+ critic, gen, enc, dec, enc2, dec2, gen_ema_1, [opt_dec, opt_disc], switch = models_ls_1
583
+ critic, gen, enc, dec, enc2, dec2, gen_ema_2, [opt_dec, opt_disc], switch = models_ls_2
584
+ critic, gen, enc, dec, enc2, dec2, gen_ema_3, [opt_dec, opt_disc], switch = models_ls_3
585
+
586
+ if genre == 0:
587
+ gen_ema = gen_ema_1
588
+ elif genre == 1:
589
+ gen_ema = gen_ema_2
590
+ else:
591
+ gen_ema = gen_ema_3
592
+
593
+ var = float(var)
594
+
595
+ if z == 0:
596
+ fac = 1
597
+ elif z == 1:
598
+ fac = 5
599
+ else:
600
+ fac = 10
601
+
602
+ bef = time.time()
603
+
604
+ noiseinp = self.get_noise_interp_multi(fac, var)
605
+
606
+ abwvc = self.generate_waveform(noiseinp, gen_ema, dec, dec2, batch_size=64)
607
+
608
+ # print(
609
+ # f"Time for complete generation pipeline: {time.time()-bef} s {int(np.round((fac*23.)/(time.time()-bef)))}x faster than Real Time!"
610
+ # )
611
+
612
+ spec = np.flip(
613
+ np.array(
614
+ tf.transpose(
615
+ self.wv2spec_hop(
616
+ (abwvc[: 23 * self.args.sr, 0] + abwvc[: 23 * self.args.sr, 1]) / 2.0, 80.0, self.args.hop * 2
617
+ ),
618
+ [1, 0],
619
+ )
620
+ ),
621
+ -2,
622
+ )
623
+
624
+ return (
625
+ np.clip(spec, -1.0, 1.0),
626
+ (self.args.sr, np.int16(abwvc * 32767.0)),
627
+ )
628
+
629
+ def render_gradio(self, models_ls_1, models_ls_2, models_ls_3, train=True):
630
+ article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini)) at the Institute of Computational Perception, JKU Linz. Supervised by Jan Schlüter."
631
+
632
+ def gradio_func(genre, x, y):
633
+ return self.stfunc(genre, x, y, models_ls_1, models_ls_2, models_ls_3)
634
+
635
+ if self.args.small:
636
+ durations = ["11s", "59s", "1m 58s"]
637
+ durations_default = "59s"
638
+ else:
639
+ durations = ["23s", "1m 58s", "3m 57s"]
640
+ durations_default = "1m 58s"
641
+
642
+ iface = gr.Interface(
643
+ fn=gradio_func,
644
+ inputs=[
645
+ gr.Radio(
646
+ choices=["Techno/Experimental", "Death Metal (finetuned)", "Misc"],
647
+ type="index",
648
+ value="Techno/Experimental",
649
+ label="Music Genre to Generate",
650
+ ),
651
+ gr.Radio(
652
+ choices=durations,
653
+ type="index",
654
+ value=durations_default,
655
+ label="Generated Music Length",
656
+ ),
657
+ gr.Slider(
658
+ minimum=0.1,
659
+ maximum=3.9,
660
+ step=0.1,
661
+ value=1.8,
662
+ label="How much do you want the music style to be varied? (Stddev truncation for random vectors)",
663
+ ),
664
+ ],
665
+ outputs=[
666
+ gr.Image(label="Log-MelSpectrogram of Generated Audio (first 23 s)"),
667
+ gr.Audio(type="numpy", label="Generated Audio"),
668
+ ],
669
+ title="musika!",
670
+ description="Blazingly Fast 44.1 kHz Stereo Waveform Music Generation of Arbitrary Length. Be patient and enjoy the weirdness!",
671
+ article=article_text,
672
+ )
673
+
674
+ print("--------------------------------")
675
+ print("--------------------------------")
676
+ print("--------------------------------")
677
+ print("--------------------------------")
678
+ print("--------------------------------")
679
+ print("CLICK ON LINK BELOW TO OPEN GRADIO INTERFACE")
680
+ if train:
681
+ iface.launch(prevent_thread_lock=True)
682
+ else:
683
+ iface.launch(enable_queue=True)
684
+ # iface.launch(share=True, enable_queue=True)
685
+ print("--------------------------------")
686
+ print("--------------------------------")
687
+ print("--------------------------------")
688
+ print("--------------------------------")
689
+ print("--------------------------------")