Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,141 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
):
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
messages.append({"role": "user", "content": message})
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from llama_cpp import Llama
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import datetime
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
+
#MODEL SETTINGS also for DISPLAY
|
9 |
+
convHistory = ''
|
10 |
+
modelfile = hf_hub_download(
|
11 |
+
repo_id=os.environ.get("REPO_ID", "Qwen/Qwen2-7B-Instruct-GGUF"),
|
12 |
+
filename=os.environ.get("MODEL_FILE", "qwen2-7b-instruct-q5_k_m.gguf"),
|
13 |
+
)
|
14 |
+
repetitionpenalty = 1.15
|
15 |
+
contextlength=4096
|
16 |
+
logfile = 'Qwen2-7B-Instruct_logs.txt'
|
17 |
+
print("loading model...")
|
18 |
+
stt = datetime.datetime.now()
|
19 |
+
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
20 |
+
llm = Llama(
|
21 |
+
model_path=modelfile, # Download the model file first
|
22 |
+
n_ctx=contextlength, # The max sequence length to use - note that longer sequence lengths require much more resources
|
23 |
+
#n_threads=2, # The number of CPU threads to use, tailor to your system and the resulting performance
|
24 |
+
)
|
25 |
+
dt = datetime.datetime.now() - stt
|
26 |
+
print(f"Model loaded in {dt}")
|
27 |
|
28 |
+
def writehistory(text):
|
29 |
+
with open(logfile, 'a') as f:
|
30 |
+
f.write(text)
|
31 |
+
f.write('\n')
|
32 |
+
f.close()
|
33 |
|
34 |
+
"""
|
35 |
+
gr.themes.Base()
|
36 |
+
gr.themes.Default()
|
37 |
+
gr.themes.Glass()
|
38 |
+
gr.themes.Monochrome()
|
39 |
+
gr.themes.Soft()
|
40 |
+
"""
|
41 |
+
def combine(a, b, c, d,e,f):
|
42 |
+
global convHistory
|
43 |
+
import datetime
|
44 |
+
SYSTEM_PROMPT = f"""{a}
|
45 |
+
"""
|
46 |
+
temperature = c
|
47 |
+
max_new_tokens = d
|
48 |
+
repeat_penalty = f
|
49 |
+
top_p = e
|
50 |
+
#prompt = f"<|user|>\n{b}<|endoftext|>\n<|assistant|>"
|
51 |
+
|
52 |
+
prompt = [
|
53 |
+
{"role": "system", "content": SYSTEM_PROMPT} ,
|
54 |
+
{"role": "user", "content": b},
|
55 |
+
]
|
56 |
+
prompt = f"""{prompt}"""
|
57 |
+
start = datetime.datetime.now()
|
58 |
+
generation = ""
|
59 |
+
delta = ""
|
60 |
+
prompt_tokens = f"Prompt Tokens: {len(llm.tokenize(bytes(prompt,encoding='utf-8')))}"
|
61 |
+
generated_text = ""
|
62 |
+
answer_tokens = ''
|
63 |
+
total_tokens = ''
|
64 |
+
for character in llm(prompt,
|
65 |
+
max_tokens=max_new_tokens,
|
66 |
+
# stop=["<|eot_id|>"],
|
67 |
+
temperature = temperature,
|
68 |
+
repeat_penalty = repeat_penalty,
|
69 |
+
top_p = top_p, # Example stop token - not necessarily correct for this specific model! Please check before using.
|
70 |
+
echo=False,
|
71 |
+
stream=True):
|
72 |
+
generation += character["choices"][0]["text"]
|
73 |
|
74 |
+
answer_tokens = f"Out Tkns: {len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
|
75 |
+
total_tokens = f"Total Tkns: {len(llm.tokenize(bytes(prompt,encoding='utf-8'))) + len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
|
76 |
+
delta = datetime.datetime.now() - start
|
77 |
+
yield generation, delta, prompt_tokens, answer_tokens, total_tokens
|
78 |
+
timestamp = datetime.datetime.now()
|
79 |
+
logger = f"""time: {timestamp}\n Temp: {temperature} - MaxNewTokens: {max_new_tokens} - RepPenalty: 1.5 \nPROMPT: \n{prompt}\nStableZephyr3B: {generation}\nGenerated in {delta}\nPromptTokens: {prompt_tokens} Output Tokens: {answer_tokens} Total Tokens: {total_tokens}\n\n---\n\n"""
|
80 |
+
writehistory(logger)
|
81 |
+
convHistory = convHistory + prompt + "\n" + generation + "\n"
|
82 |
+
print(convHistory)
|
83 |
+
return generation, delta, prompt_tokens, answer_tokens, total_tokens
|
84 |
+
#return generation, delta
|
85 |
|
|
|
86 |
|
87 |
+
# MAIN GRADIO INTERFACE
|
88 |
+
with gr.Blocks(theme='Medguy/base2') as demo: #theme=gr.themes.Glass() #theme='remilia/Ghostly'
|
89 |
+
#TITLE SECTION
|
90 |
+
with gr.Row(variant='compact'):
|
91 |
+
with gr.Column(scale=10):
|
92 |
+
gr.HTML("<center>"
|
93 |
+
+ "<h2>πΆ Paotung QWEN2-7b</h2></center>")
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column(min_width=80):
|
96 |
+
gentime = gr.Textbox(value="", placeholder="Generation Time:", min_width=50, show_label=False)
|
97 |
+
with gr.Column(min_width=80):
|
98 |
+
prompttokens = gr.Textbox(value="", placeholder="Prompt Tkn:", min_width=50, show_label=False)
|
99 |
+
with gr.Column(min_width=80):
|
100 |
+
outputokens = gr.Textbox(value="", placeholder="Output Tkn:", min_width=50, show_label=False)
|
101 |
+
with gr.Column(min_width=80):
|
102 |
+
totaltokens = gr.Textbox(value="", placeholder="Total Tokens:", min_width=50, show_label=False)
|
103 |
+
# INTERACTIVE INFOGRAPHIC SECTION
|
104 |
+
|
105 |
|
106 |
+
# PLAYGROUND INTERFACE SECTION
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
gr.Markdown(
|
110 |
+
f"""
|
111 |
+
### Tunning Parameters""")
|
112 |
+
temp = gr.Slider(label="Temperature",minimum=0.0, maximum=1.0, step=0.01, value=0.42)
|
113 |
+
top_p = gr.Slider(label="Top_P",minimum=0.0, maximum=1.0, step=0.01, value=0.8)
|
114 |
+
repPen = gr.Slider(label="Repetition Penalty",minimum=0.0, maximum=4.0, step=0.01, value=1.2)
|
115 |
+
max_len = gr.Slider(label="Maximum output lenght", minimum=10,maximum=(contextlength-500),step=2, value=900)
|
116 |
+
gr.Markdown(
|
117 |
+
"""
|
118 |
+
Fill the System Prompt and User Prompt
|
119 |
+
And then click the Button below
|
120 |
+
""")
|
121 |
+
btn = gr.Button(value="ππ¦ Generate", variant='primary')
|
122 |
+
gr.Markdown(
|
123 |
+
f"""
|
124 |
+
- **Prompt Template**: Llama-3-8B
|
125 |
+
- **Repetition Penalty**: {repetitionpenalty}
|
126 |
+
- **Context Lenght**: {contextlength} tokens
|
127 |
+
- **LLM Engine**: llama-cpp
|
128 |
+
- **Model**: ππ¦ Llama-3-8B
|
129 |
+
- **Log File**: {logfile}
|
130 |
+
""")
|
131 |
|
|
|
|
|
132 |
|
133 |
+
with gr.Column(scale=4):
|
134 |
+
txt = gr.Textbox(label="System Prompt", value = "", placeholder = "This models does not have any System prompt...",lines=1, interactive = True)
|
135 |
+
txt_2 = gr.Textbox(label="User Prompt", lines=5, show_copy_button=True)
|
136 |
+
txt_3 = gr.Textbox(value="", label="Output", lines = 10, show_copy_button=True)
|
137 |
+
btn.click(combine, inputs=[txt, txt_2,temp,max_len,top_p,repPen], outputs=[txt_3,gentime,prompttokens,outputokens,totaltokens])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
demo.launch(inbrowser=True)
|