File size: 6,234 Bytes
dc7fd93
fe8bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7fd93
 
fe8bfde
 
 
 
 
dc7fd93
fe8bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7fd93
fe8bfde
 
 
 
dc7fd93
fe8bfde
 
 
 
 
 
 
 
 
dc7fd93
 
fe8bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7fd93
fe8bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7fd93
 
fe8bfde
 
 
 
 
dc7fd93
 
 
fe8bfde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
from llama_cpp import Llama
import datetime
import os
import datetime
from huggingface_hub import hf_hub_download  

#MODEL SETTINGS also for DISPLAY
convHistory = ''
modelfile = hf_hub_download(
        repo_id=os.environ.get("REPO_ID", "RichardErkhov/scb10x_-_llama-3-typhoon-v1.5-8b-instruct-gguf"),
        filename=os.environ.get("MODEL_FILE", "llama-3-typhoon-v1.5-8b-instruct.Q4_K_M.gguf"),
    )
repetitionpenalty = 1.15
contextlength=8192
logfile = 'typhoon-v1.5-8b-instruct_logs.txt'
print("loading model...")
stt = datetime.datetime.now()
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path=modelfile,  # Download the model file first
  n_ctx=contextlength,  # The max sequence length to use - note that longer sequence lengths require much more resources
  n_threads=2,            # The number of CPU threads to use, tailor to your system and the resulting performance
)
dt = datetime.datetime.now() - stt
print(f"Model loaded in {dt}")

def writehistory(text):
    with open(logfile, 'a') as f:
        f.write(text)
        f.write('\n')
    f.close()

"""
gr.themes.Base()
gr.themes.Default()
gr.themes.Glass()
gr.themes.Monochrome()
gr.themes.Soft()
"""
def combine(a, b, c, d,e,f):
    global convHistory
    import datetime
    SYSTEM_PROMPT = f"""{a}
    """ 
    temperature = c
    max_new_tokens = d
    repeat_penalty = f
    top_p = e
    prompt = f"<|user|>\n{b}<|endoftext|>\n<|assistant|>"
    
    # prompt = [
    #     {"role": "system", "content": SYSTEM_PROMPT} ,
    #     {"role": "user", "content": b},
    # ]
    prompt = f"""{prompt}"""
    start = datetime.datetime.now()
    generation = ""
    delta = ""
    prompt_tokens = f"Prompt Tokens: {len(llm.tokenize(bytes(prompt,encoding='utf-8')))}"
    generated_text = ""
    answer_tokens = ''
    total_tokens = ''   
    for character in llm(prompt, 
                max_tokens=max_new_tokens, 
                #stop=["<|eot_id|>"],
                temperature = temperature,
                repeat_penalty = repeat_penalty,
                top_p = top_p,   # Example stop token - not necessarily correct for this specific model! Please check before using.
                echo=False, 
                stream=True):
        generation += character["choices"][0]["text"]

        answer_tokens = f"Out Tkns: {len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        total_tokens = f"Total Tkns: {len(llm.tokenize(bytes(prompt,encoding='utf-8'))) + len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        delta = datetime.datetime.now() - start
        yield generation, delta, prompt_tokens, answer_tokens, total_tokens

    print(f"Response: {generation}")
    
    timestamp = datetime.datetime.now()
    logger = f"""time: {timestamp}\n Temp: {temperature} - MaxNewTokens: {max_new_tokens} - RepPenalty: 1.5 \nPROMPT: \n{prompt}\nStableZephyr3B: {generation}\nGenerated in {delta}\nPromptTokens: {prompt_tokens}   Output Tokens: {answer_tokens}  Total Tokens: {total_tokens}\n\n---\n\n"""
    writehistory(logger)
    convHistory = convHistory + prompt + "\n" + generation + "\n"
    print(convHistory)
    return generation, delta, prompt_tokens, answer_tokens, total_tokens    
    #return generation, delta


# MAIN GRADIO INTERFACE
with gr.Blocks(theme='Medguy/base2') as demo:   #theme=gr.themes.Glass()  #theme='remilia/Ghostly'
    #TITLE SECTION
    with gr.Row(variant='compact'):            
            with gr.Column(scale=10):
                gr.HTML("<center>"
                + "<h2>🐢 Paotung Typhoon</h2></center>")  
                with gr.Row():
                        with gr.Column(min_width=80):
                            gentime = gr.Textbox(value="", placeholder="Generation Time:", min_width=50, show_label=False)                          
                        with gr.Column(min_width=80):
                            prompttokens = gr.Textbox(value="", placeholder="Prompt Tkn:", min_width=50, show_label=False)
                        with gr.Column(min_width=80):
                            outputokens = gr.Textbox(value="", placeholder="Output Tkn:", min_width=50, show_label=False)            
                        with gr.Column(min_width=80):
                            totaltokens = gr.Textbox(value="", placeholder="Total Tokens:", min_width=50, show_label=False)   
    # INTERACTIVE INFOGRAPHIC SECTION
    

    # PLAYGROUND INTERFACE SECTION
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
            f"""
            ### Tunning Parameters""")
            temp = gr.Slider(label="Temperature",minimum=0.0, maximum=1.0, step=0.01, value=0.42)
            top_p = gr.Slider(label="Top_P",minimum=0.0, maximum=1.0, step=0.01, value=0.8)
            repPen = gr.Slider(label="Repetition Penalty",minimum=0.0, maximum=4.0, step=0.01, value=1.2)
            max_len = gr.Slider(label="Maximum output lenght", minimum=10,maximum=(contextlength-500),step=2, value=900)
            gr.Markdown(
            """
            Fill the System Prompt and User Prompt
            And then click the Button below
            """)
            btn = gr.Button(value="πŸ’ŽπŸ¦œ Generate", variant='primary')
            gr.Markdown(
            f"""
            - **Prompt Template**: Llama-3-8B
            - **Repetition Penalty**: {repetitionpenalty}
            - **Context Lenght**: {contextlength} tokens
            - **LLM Engine**: llama-cpp
            - **Model**: πŸ’ŽπŸ¦œ Llama-3-8B + typhoon-v1.5-8b-instruct
            - **Log File**: {logfile}
            """) 


        with gr.Column(scale=4):
            txt = gr.Textbox(label="System Prompt", value = "", placeholder = "This models does not have any System prompt...",lines=1, interactive = True)
            txt_2 = gr.Textbox(label="User Prompt", lines=5, show_copy_button=True)
            txt_3 = gr.Textbox(value="", label="Output", lines = 10, show_copy_button=True)
            btn.click(combine, inputs=[txt, txt_2,temp,max_len,top_p,repPen], outputs=[txt_3,gentime,prompttokens,outputokens,totaltokens])


if __name__ == "__main__":
    demo.launch(inbrowser=True)