KingNish's picture
Update app.py
45b7208 verified
raw
history blame
14.9 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import sys
import random
import gradio as gr
import numpy as np
import uuid
import spaces
from diffusers import ConsistencyDecoderVAE, DPMSolverMultistepScheduler, Transformer2DModel, AutoencoderKL, SASolverScheduler
import torch
from typing import Tuple
from datetime import datetime
from peft import PeftModel
from diffusers_patches import pixart_sigma_init_patched_inputs, PixArtSigmaPipeline
DESCRIPTION = """![Logo](https://raw.githubusercontent.com/PixArt-alpha/PixArt-sigma-project/master/static/images/logo-sigma.png)
# PixArt-Sigma 1024px
#### [PixArt-Sigma 1024px](https://github.com/PixArt-alpha/PixArt-sigma) is a transformer-based text-to-image diffusion system trained on text embeddings from T5. This demo uses the [PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS) checkpoint.
#### English prompts ONLY; 提示词仅限英文
#### Welcome to Star🌟 our [GitHub](https://github.com/PixArt-alpha/PixArt-sigma)
### <span style='color: red;'>You may change the DPM-Solver inference steps from 14 to 20, or DPM-Solver Guidance scale from 4.5 to 3.5 if you didn't get satisfied results.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "6000"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Realistic",
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Realistic"
SCHEDULE_NAME = ["DPM-Solver", "SA-Solver"]
DEFAULT_SCHEDULE_NAME = "DPM-Solver"
NUM_IMAGES_PER_PROMPT = 1
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
if torch.cuda.is_available():
weight_dtype = torch.float16
T5_token_max_length = 300
# tmp patches for diffusers PixArtSigmaPipeline Implementation
print(
"Changing _init_patched_inputs method of diffusers.models.Transformer2DModel "
"using scripts.diffusers_patches.pixart_sigma_init_patched_inputs")
setattr(Transformer2DModel, '_init_patched_inputs', pixart_sigma_init_patched_inputs)
transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
subfolder='transformer',
torch_dtype=weight_dtype,
)
pipe = PixArtSigmaPipeline.from_pretrained(
"PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
transformer=transformer,
torch_dtype=weight_dtype,
use_safetensors=True,
)
if os.getenv('CONSISTENCY_DECODER', False):
print("Using DALL-E 3 Consistency Decoder")
pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
print("Loaded on Device!")
# speed-up T5
pipe.text_encoder.to_bettertransformer()
if USE_TORCH_COMPILE:
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@torch.no_grad()
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate(
prompt: str,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
num_imgs: int = 1,
seed: int = 0,
width: int = 400,
height: int = 400,
schedule: str = 'DPM-Solver',
dpms_guidance_scale: float = 3.5,
sas_guidance_scale: float = 3,
dpms_inference_steps: int = 9,
sas_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
if schedule == 'DPM-Solver':
if not isinstance(pipe.scheduler, DPMSolverMultistepScheduler):
pipe.scheduler = DPMSolverMultistepScheduler()
num_inference_steps = dpms_inference_steps
guidance_scale = dpms_guidance_scale
elif schedule == "SA-Solver":
if not isinstance(pipe.scheduler, SASolverScheduler):
pipe.scheduler = SASolverScheduler.from_config(pipe.scheduler.config, algorithm_type='data_prediction', tau_func=lambda t: 1 if 200 <= t <= 800 else 0, predictor_order=2, corrector_order=2)
num_inference_steps = sas_inference_steps
guidance_scale = sas_guidance_scale
else:
raise ValueError(f"Unknown schedule: {schedule}")
if not use_negative_prompt:
negative_prompt = None # type: ignore
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
images = pipe(
prompt=prompt,
width=width,
height=height,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
num_images_per_prompt=num_imgs,
use_resolution_binning=use_resolution_binning,
output_type="pil",
max_sequence_length=T5_token_max_length,
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"A Monkey with a happy face in the Sahara desert.",
"Eiffel Tower was Made up of ICE to look like a cloud, with the bell tower at the top of the building.",
"3D small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest. The creature, a whimsical blend of a rabbit and a squirrel, has soft blue fur and a bushy, striped tail. It hops along a sparkling stream, its eyes wide with wonder. The forest is alive with magical elements: flowers that glow and change colors, trees with leaves in shades of purple and silver, and small floating lights that resemble fireflies. The creature stops to interact playfully with a group of tiny, fairy-like beings dancing around a mushroom ring. The creature looks up in awe at a large, glowing tree that seems to be the heart of the forest.",
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath. She has blue eyes and blond hair, and wears a pair of earrings. Behind are blurred city buildings and streets.",
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
"a handsome young boy in the middle with sky color background wearing eye glasses, it's super detailed with anime style, it's a portrait with delicated eyes and nice looking face",
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, intricate detail.",
"professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.",
"Outside View from Hotel Made up of Chocolate in space.",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Row(equal_height=False):
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
# with gr.Accordion("Advanced options", open=False):
with gr.Group():
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
num_imgs = gr.Slider(
label="Num Images",
minimum=1,
maximum=8,
step=1,
value=1,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=400,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=400,
)
with gr.Row():
dpms_guidance_scale = gr.Slider(
label="Temprature",
minimum=3,
maximum=4,
step=0.1,
value=3.5,
)
dpms_inference_steps = gr.Slider(
label="Steps",
minimum=5,
maximum=25,
step=1,
value=9,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
num_imgs,
seed,
width,
height,
schedule,
dpms_guidance_scale,
sas_guidance_scale,
dpms_inference_steps,
sas_inference_steps,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
# demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)