Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,235 @@
|
|
1 |
-
import
|
2 |
-
import argparse
|
3 |
import os
|
4 |
-
import
|
5 |
-
|
6 |
-
from safetensors.torch import load_file
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
|
9 |
-
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
10 |
-
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
11 |
-
os.environ["HF_HUB_CACHE"] = cache_path
|
12 |
-
os.environ["HF_HOME"] = cache_path
|
13 |
-
|
14 |
import gradio as gr
|
|
|
|
|
|
|
|
|
15 |
import torch
|
16 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# from scheduling_tcd import TCDScheduler
|
19 |
|
20 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
21 |
|
22 |
-
class timer:
|
23 |
-
def __init__(self, method_name="timed process"):
|
24 |
-
self.method = method_name
|
25 |
|
26 |
-
def __enter__(self):
|
27 |
-
self.start = time.time()
|
28 |
-
print(f"{self.method} starts")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
if not path.exists(cache_path):
|
35 |
-
os.makedirs(cache_path, exist_ok=True)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
with gr.Blocks() as demo:
|
44 |
gr.Markdown(DESCRIPTION)
|
45 |
-
with gr.
|
46 |
with gr.Group():
|
47 |
with gr.Row():
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
label="Seed",
|
62 |
minimum=0,
|
63 |
-
maximum=99999999,
|
64 |
-
step=1,
|
65 |
-
value=0,
|
66 |
-
)
|
67 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
68 |
-
with gr.Row(visible=True):
|
69 |
width = gr.Slider(
|
70 |
label="Width",
|
71 |
minimum=256,
|
72 |
-
maximum=
|
73 |
step=32,
|
74 |
-
value=
|
75 |
)
|
76 |
height = gr.Slider(
|
77 |
label="Height",
|
78 |
minimum=256,
|
79 |
-
maximum=
|
80 |
step=32,
|
81 |
-
value=
|
82 |
)
|
83 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
examples=examples,
|
85 |
inputs=prompt,
|
86 |
outputs=[result, seed],
|
@@ -88,56 +237,69 @@ with gr.Blocks() as demo:
|
|
88 |
cache_examples=CACHE_EXAMPLES,
|
89 |
)
|
90 |
|
91 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
92 |
-
if randomize_seed:
|
93 |
-
seed = random.randint(0, 99999999)
|
94 |
-
return seed
|
95 |
-
|
96 |
-
@spaces.GPU(duration=10)
|
97 |
-
def process_image( height, width, prompt, seed, randomize_seed):
|
98 |
-
global pipe
|
99 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
100 |
-
return pipe(
|
101 |
-
prompt=str,,
|
102 |
-
num_inference_steps=1,
|
103 |
-
guidance_scale=0.,
|
104 |
-
height=int(height),
|
105 |
-
width=int(width),
|
106 |
-
timesteps=[800],
|
107 |
-
randomize_seed: bool = False,
|
108 |
-
use_resolution_binning: bool = True,
|
109 |
-
progress=gr.Progress(track_tqdm=True),
|
110 |
-
).images
|
111 |
-
|
112 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
113 |
-
generator = torch.Generator().manual_seed(seed)
|
114 |
-
|
115 |
-
reactive_controls = [ height, width, prompt, seed, randomize_seed]
|
116 |
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
-
DESCRIPTION = """ # Instant Image
|
125 |
-
### Super fast text to Image Generator.
|
126 |
-
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
|
127 |
-
### First Image processing takes time then images generate faster.
|
128 |
-
"""
|
129 |
-
if not torch.cuda.is_available():
|
130 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
131 |
|
132 |
|
133 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
134 |
-
|
135 |
-
examples = [
|
136 |
-
"A Monkey with a happy face in the Sahara desert.",
|
137 |
-
"Eiffel Tower was Made up of ICE.",
|
138 |
-
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
|
139 |
-
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
|
140 |
-
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
|
141 |
-
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
|
142 |
-
]
|
143 |
|
|
|
1 |
+
from __future__ import annotations
|
|
|
2 |
import os
|
3 |
+
import random
|
4 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import numpy as np
|
8 |
+
import uuid
|
9 |
+
from diffusers import PixArtAlphaPipeline, LCMScheduler
|
10 |
import torch
|
11 |
+
from typing import Tuple
|
12 |
+
from datetime import datetime
|
13 |
+
|
14 |
+
|
15 |
+
DESCRIPTION = """ # Instant Image
|
16 |
+
### Super fast text to Image Generator.
|
17 |
+
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
|
18 |
+
### First Image processing takes time then images generate faster.
|
19 |
+
"""
|
20 |
+
if not torch.cuda.is_available():
|
21 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
22 |
+
|
23 |
+
MAX_SEED = np.iinfo(np.int32).max
|
24 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
25 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "3000"))
|
26 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
27 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
28 |
+
PORT = int(os.getenv("DEMO_PORT", "15432"))
|
29 |
+
|
30 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
+
|
32 |
+
|
33 |
+
style_list = [
|
34 |
+
{
|
35 |
+
"name": "(No style)",
|
36 |
+
"prompt": "{prompt}",
|
37 |
+
"negative_prompt": "",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"name": "Cinematic",
|
41 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
42 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "Realistic",
|
46 |
+
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
|
47 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"name": "Anime",
|
51 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
52 |
+
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"name": "Digital Art",
|
56 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
57 |
+
"negative_prompt": "photo, photorealistic, realism, ugly",
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "Pixel art",
|
61 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
62 |
+
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"name": "Fantasy art",
|
66 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
67 |
+
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"name": "3D Model",
|
71 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
72 |
+
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
73 |
+
},
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
78 |
+
STYLE_NAMES = list(styles.keys())
|
79 |
+
DEFAULT_STYLE_NAME = "(No style)"
|
80 |
+
NUM_IMAGES_PER_PROMPT = 1
|
81 |
+
|
82 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
83 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
84 |
+
if not negative:
|
85 |
+
negative = ""
|
86 |
+
return p.replace("{prompt}", positive), n + negative
|
87 |
+
|
88 |
+
if torch.cuda.is_available():
|
89 |
+
|
90 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
91 |
+
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
92 |
+
torch_dtype=torch.float16,
|
93 |
+
use_safetensors=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
if os.getenv('CONSISTENCY_DECODER', False):
|
97 |
+
print("Using DALL-E 3 Consistency Decoder")
|
98 |
+
pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
99 |
+
|
100 |
+
if ENABLE_CPU_OFFLOAD:
|
101 |
+
pipe.enable_model_cpu_offload()
|
102 |
+
else:
|
103 |
+
pipe.to(device)
|
104 |
+
print("Loaded on Device!")
|
105 |
+
|
106 |
+
# speed-up T5
|
107 |
+
pipe.text_encoder.to_bettertransformer()
|
108 |
+
|
109 |
+
if USE_TORCH_COMPILE:
|
110 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
111 |
+
print("Model Compiled!")
|
112 |
+
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
|
|
|
|
|
116 |
|
|
|
|
|
|
|
117 |
|
118 |
+
def save_image(img):
|
119 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
120 |
+
img.save(unique_name)
|
121 |
+
return unique_name
|
122 |
|
|
|
|
|
123 |
|
124 |
+
|
125 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
126 |
+
if randomize_seed:
|
127 |
+
seed = random.randint(0, MAX_SEED)
|
128 |
+
return seed
|
129 |
+
|
130 |
+
@spaces.GPU(duration=30)
|
131 |
+
def generate(
|
132 |
+
prompt: str,
|
133 |
+
negative_prompt: str = "",
|
134 |
+
style: str = DEFAULT_STYLE_NAME,
|
135 |
+
use_negative_prompt: bool = False,
|
136 |
+
seed: int = 0,
|
137 |
+
width: int = 1024,
|
138 |
+
height: int = 1024,
|
139 |
+
inference_steps: int = 4,
|
140 |
+
randomize_seed: bool = False,
|
141 |
+
use_resolution_binning: bool = True,
|
142 |
+
progress=gr.Progress(track_tqdm=True),
|
143 |
+
):
|
144 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
145 |
+
generator = torch.Generator().manual_seed(seed)
|
146 |
+
|
147 |
+
if not use_negative_prompt:
|
148 |
+
negative_prompt = None # type: ignore
|
149 |
+
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
150 |
+
|
151 |
+
images = pipe(
|
152 |
+
prompt=prompt,
|
153 |
+
negative_prompt=negative_prompt,
|
154 |
+
width=width,
|
155 |
+
height=height,
|
156 |
+
guidance_scale=0,
|
157 |
+
num_inference_steps=inference_steps,
|
158 |
+
generator=generator,
|
159 |
+
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
160 |
+
use_resolution_binning=use_resolution_binning,
|
161 |
+
output_type="pil",
|
162 |
+
).images
|
163 |
+
|
164 |
+
image_paths = [save_image(img) for img in images]
|
165 |
+
print(image_paths)
|
166 |
+
return image_paths, seed
|
167 |
+
|
168 |
+
|
169 |
+
examples = [
|
170 |
+
"A Monkey with a happy face in the Sahara desert.",
|
171 |
+
"Eiffel Tower was Made up of ICE.",
|
172 |
+
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
|
173 |
+
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
|
174 |
+
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
|
175 |
+
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
|
176 |
+
]
|
177 |
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown(DESCRIPTION)
|
180 |
+
with gr.Accordion("Advanced options", open=False):
|
181 |
with gr.Group():
|
182 |
with gr.Row():
|
183 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
184 |
+
negative_prompt = gr.Text(
|
185 |
+
label="Negative prompt",
|
186 |
+
max_lines=1,
|
187 |
+
placeholder="Enter a negative prompt",
|
188 |
+
visible=True,
|
189 |
+
)
|
190 |
+
|
191 |
+
# num_imgs = gr.Slider(
|
192 |
+
# label="Num Images",
|
193 |
+
# minimum=1,
|
194 |
+
# maximum=8,
|
195 |
+
# step=1,
|
196 |
+
# value=1,
|
197 |
+
# )
|
198 |
+
style_selection = gr.Radio(
|
199 |
+
show_label=True,
|
200 |
+
container=True,
|
201 |
+
interactive=True,
|
202 |
+
choices=STYLE_NAMES,
|
203 |
+
value=DEFAULT_STYLE_NAME,
|
204 |
+
label="Image Style",
|
205 |
+
)
|
206 |
+
seed = gr.Slider(
|
207 |
label="Seed",
|
208 |
minimum=0,
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
width = gr.Slider(
|
210 |
label="Width",
|
211 |
minimum=256,
|
212 |
+
maximum=MAX_IMAGE_SIZE,
|
213 |
step=32,
|
214 |
+
value=1024,
|
215 |
)
|
216 |
height = gr.Slider(
|
217 |
label="Height",
|
218 |
minimum=256,
|
219 |
+
maximum=MAX_IMAGE_SIZE,
|
220 |
step=32,
|
221 |
+
value=1024,
|
222 |
)
|
223 |
+
with gr.Row():
|
224 |
+
inference_steps = gr.Slider(
|
225 |
+
label="Steps",
|
226 |
+
minimum=4,
|
227 |
+
maximum=20,
|
228 |
+
step=1,
|
229 |
+
value=4,
|
230 |
+
)
|
231 |
+
|
232 |
+
gr.Examples(
|
233 |
examples=examples,
|
234 |
inputs=prompt,
|
235 |
outputs=[result, seed],
|
|
|
237 |
cache_examples=CACHE_EXAMPLES,
|
238 |
)
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
use_negative_prompt.change(
|
260 |
+
fn=lambda x: gr.update(visible=x),
|
261 |
+
inputs=use_negative_prompt,
|
262 |
+
outputs=negative_prompt,
|
263 |
+
api_name=False,
|
264 |
+
)
|
265 |
+
|
266 |
+
gr.on(
|
267 |
+
triggers=[
|
268 |
+
prompt.submit,
|
269 |
+
negative_prompt.submit,
|
270 |
+
run_button.click,
|
271 |
+
],
|
272 |
+
fn=generate,
|
273 |
+
inputs=[
|
274 |
+
prompt,
|
275 |
+
negative_prompt,
|
276 |
+
style_selection,
|
277 |
+
use_negative_prompt,
|
278 |
+
# num_imgs,
|
279 |
+
seed,
|
280 |
+
width,
|
281 |
+
height,
|
282 |
+
inference_steps,
|
283 |
+
randomize_seed,
|
284 |
+
],
|
285 |
+
outputs=[result, seed],
|
286 |
+
api_name="run",
|
287 |
+
)
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
+
demo.queue(max_size=20).launch()
|
291 |
+
# demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|