Spaces:
Sleeping
Sleeping
namkwonwoo
commited on
Commit
·
9a0d3f1
1
Parent(s):
3d3c082
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"nvidia/segformer-b0-finetuned-ade-512-512"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"nvidia/segformer-b0-finetuned-ade-512-512"
|
15 |
+
)
|
16 |
+
|
17 |
+
def ade_palette():
|
18 |
+
"""ADE20K palette that maps each class to RGB values."""
|
19 |
+
return [
|
20 |
+
[204, 87, 92],
|
21 |
+
[112, 185, 212],
|
22 |
+
[45, 189, 106],
|
23 |
+
[234, 123, 67],
|
24 |
+
[78, 56, 123],
|
25 |
+
[210, 32, 89],
|
26 |
+
[90, 180, 56],
|
27 |
+
[155, 102, 200],
|
28 |
+
[33, 147, 176],
|
29 |
+
[255, 183, 76],
|
30 |
+
[67, 123, 89],
|
31 |
+
[190, 60, 45],
|
32 |
+
[134, 112, 200],
|
33 |
+
[56, 45, 189],
|
34 |
+
[200, 56, 123],
|
35 |
+
[230, 127, 34],
|
36 |
+
[179, 51, 126],
|
37 |
+
[122, 122, 201],
|
38 |
+
[255, 221, 101],
|
39 |
+
[97, 48, 88],
|
40 |
+
[225, 49, 112],
|
41 |
+
[55, 120, 254],
|
42 |
+
[181, 43, 25],
|
43 |
+
[212, 59, 3],
|
44 |
+
[51, 0, 0],
|
45 |
+
[0, 51, 0],
|
46 |
+
[0, 0, 51],
|
47 |
+
[153, 153, 153],
|
48 |
+
[255, 127, 0],
|
49 |
+
[128, 255, 0],
|
50 |
+
[0, 128, 255],
|
51 |
+
[255, 0, 128],
|
52 |
+
[128, 255, 128],
|
53 |
+
[255, 0, 0],
|
54 |
+
[128, 255, 0],
|
55 |
+
[255, 0, 128],
|
56 |
+
[0, 128, 0],
|
57 |
+
[0, 0, 128],
|
58 |
+
[0, 128, 255],
|
59 |
+
[128, 0, 255],
|
60 |
+
[255, 0, 128],
|
61 |
+
[128, 255, 128],
|
62 |
+
[255, 0, 0],
|
63 |
+
[0, 128, 255],
|
64 |
+
[128, 0, 255],
|
65 |
+
[0, 0, 0],
|
66 |
+
[255, 128, 0],
|
67 |
+
[0, 255, 0],
|
68 |
+
[0, 0, 128],
|
69 |
+
[0, 0, 0],
|
70 |
+
[255, 0, 0],
|
71 |
+
[128, 0, 255],
|
72 |
+
[0, 128, 0],
|
73 |
+
[255, 255, 128],
|
74 |
+
[255, 0, 255],
|
75 |
+
[255, 255, 0],
|
76 |
+
[128, 0, 0],
|
77 |
+
[255, 128, 128],
|
78 |
+
[0, 128, 255],
|
79 |
+
[128, 0, 255],
|
80 |
+
[0, 0, 255],
|
81 |
+
[0, 255, 255],
|
82 |
+
[255, 255, 0],
|
83 |
+
[255, 0, 255],
|
84 |
+
[255, 128, 0],
|
85 |
+
[255, 255, 255],
|
86 |
+
[128, 0, 0],
|
87 |
+
[255, 0, 255],
|
88 |
+
[255, 255, 0],
|
89 |
+
[0, 0, 128],
|
90 |
+
[255, 255, 255],
|
91 |
+
[0, 255, 0],
|
92 |
+
[0, 0, 0],
|
93 |
+
[255, 128, 0],
|
94 |
+
[0, 255, 128],
|
95 |
+
[255, 0, 0],
|
96 |
+
[0, 0, 255],
|
97 |
+
[128, 255, 0],
|
98 |
+
[255, 255, 128],
|
99 |
+
[255, 255, 0],
|
100 |
+
[255, 128, 128],
|
101 |
+
[255, 0, 128],
|
102 |
+
[255, 128, 255],
|
103 |
+
[255, 0, 128],
|
104 |
+
[255, 255, 0],
|
105 |
+
[255, 128, 0],
|
106 |
+
[204, 87, 92],
|
107 |
+
[128, 255, 0],
|
108 |
+
[255, 0, 255],
|
109 |
+
[0, 255, 128],
|
110 |
+
[90, 180, 56],
|
111 |
+
[91, 1, 5],
|
112 |
+
[92, 64, 34],
|
113 |
+
[93, 128, 0],
|
114 |
+
[94, 255, 0],
|
115 |
+
[95, 34, 87],
|
116 |
+
[96, 86, 145],
|
117 |
+
[97, 123, 98],
|
118 |
+
[98, 0, 255],
|
119 |
+
[99, 255, 128],
|
120 |
+
[100, 45, 122],
|
121 |
+
[101, 134, 245],
|
122 |
+
[102, 32, 23],
|
123 |
+
[103, 56, 0],
|
124 |
+
[104, 76, 98],
|
125 |
+
[105, 176, 90],
|
126 |
+
[106, 102, 200],
|
127 |
+
[107, 56, 78],
|
128 |
+
[108, 23, 89],
|
129 |
+
[109, 45, 200],
|
130 |
+
[110, 87, 5],
|
131 |
+
[111, 200, 67],
|
132 |
+
[112, 34, 23],
|
133 |
+
[113, 98, 76],
|
134 |
+
[114, 122, 56],
|
135 |
+
[115, 56, 23],
|
136 |
+
[116, 78, 90],
|
137 |
+
[117, 200, 45],
|
138 |
+
[118, 23, 56],
|
139 |
+
[119, 56, 189],
|
140 |
+
[120, 0, 45],
|
141 |
+
[121, 0, 0],
|
142 |
+
[122, 89, 34],
|
143 |
+
[123, 200, 1],
|
144 |
+
[124, 32, 45],
|
145 |
+
[125, 89, 0],
|
146 |
+
[126, 0, 200],
|
147 |
+
[127, 90, 200],
|
148 |
+
[128, 45, 200],
|
149 |
+
[129, 0, 123],
|
150 |
+
[130, 200, 23],
|
151 |
+
[131, 32, 200],
|
152 |
+
[132, 56, 23],
|
153 |
+
[133, 87, 98],
|
154 |
+
[134, 0, 32],
|
155 |
+
[135, 90, 0],
|
156 |
+
[136, 45, 23],
|
157 |
+
[137, 0, 89],
|
158 |
+
[138, 200, 0],
|
159 |
+
[139, 45, 23],
|
160 |
+
[140, 123, 0],
|
161 |
+
[141, 45, 200],
|
162 |
+
[142, 98, 23],
|
163 |
+
[143, 0, 98],
|
164 |
+
[144, 200, 45],
|
165 |
+
[145, 0, 23],
|
166 |
+
[146, 23, 87],
|
167 |
+
[147, 45, 0],
|
168 |
+
[148, 0, 89],
|
169 |
+
[149, 200, 32]
|
170 |
+
]
|
171 |
+
|
172 |
+
labels_list = []
|
173 |
+
|
174 |
+
with open(r'labels.txt', 'r') as fp:
|
175 |
+
for line in fp:
|
176 |
+
labels_list.append(line[:-1])
|
177 |
+
|
178 |
+
colormap = np.asarray(ade_palette())
|
179 |
+
|
180 |
+
def label_to_color_image(label):
|
181 |
+
if label.ndim != 2:
|
182 |
+
raise ValueError("Expect 2-D input label")
|
183 |
+
|
184 |
+
if np.max(label) >= len(colormap):
|
185 |
+
raise ValueError("label value too large.")
|
186 |
+
return colormap[label]
|
187 |
+
|
188 |
+
def draw_plot(pred_img, seg):
|
189 |
+
fig = plt.figure(figsize=(20, 15))
|
190 |
+
|
191 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
192 |
+
|
193 |
+
plt.subplot(grid_spec[0])
|
194 |
+
plt.imshow(pred_img)
|
195 |
+
plt.axis('off')
|
196 |
+
LABEL_NAMES = np.asarray(labels_list)
|
197 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
198 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
199 |
+
|
200 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
201 |
+
ax = plt.subplot(grid_spec[1])
|
202 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
203 |
+
ax.yaxis.tick_right()
|
204 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
205 |
+
plt.xticks([], [])
|
206 |
+
ax.tick_params(width=0.0, labelsize=25)
|
207 |
+
return fig
|
208 |
+
|
209 |
+
def sepia(input_img):
|
210 |
+
input_img = Image.fromarray(input_img)
|
211 |
+
|
212 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
213 |
+
outputs = model(**inputs)
|
214 |
+
logits = outputs.logits
|
215 |
+
|
216 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
217 |
+
logits = tf.image.resize(
|
218 |
+
logits, input_img.size[::-1]
|
219 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
220 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
221 |
+
|
222 |
+
color_seg = np.zeros(
|
223 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
224 |
+
) # height, width, 3
|
225 |
+
for label, color in enumerate(colormap):
|
226 |
+
color_seg[seg.numpy() == label, :] = color
|
227 |
+
|
228 |
+
# Show image + mask
|
229 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
230 |
+
pred_img = pred_img.astype(np.uint8)
|
231 |
+
|
232 |
+
fig = draw_plot(pred_img, seg)
|
233 |
+
return fig
|
234 |
+
|
235 |
+
demo = gr.Interface(fn=sepia,
|
236 |
+
inputs=gr.Image(shape=(400, 600)),
|
237 |
+
outputs=['plot'],
|
238 |
+
examples=["test1.jpg", "test2.jpg", "test3.jpg", "test4.jpg"],
|
239 |
+
allow_flagging='never')
|
240 |
+
|
241 |
+
|
242 |
+
demo.launch()
|