leaderboard / utils.py
nan's picture
feat: enable the search bar and reranking selector
61eca2d
raw
history blame
2.36 kB
import pandas as pd
from src.display.utils import AutoEvalColumnQA, COLS
from src.benchmarks import BENCHMARK_COLS_QA, BenchmarksQA
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame:
return df.loc[df["Reranking Model"].isin(reranking_query)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
]
)
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumnQA.retrieval_model.name,
AutoEvalColumnQA.reranking_model.name,
AutoEvalColumnQA.average.name
]
selected_cols = []
for c in COLS:
if c not in df.columns:
continue
if c not in BENCHMARK_COLS_QA:
continue
eval_col = BenchmarksQA[c].value
if eval_col.domain not in domain_query:
continue
if eval_col.lang not in language_query:
continue
selected_cols.append(c)
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + selected_cols]
filtered_df[AutoEvalColumnQA.average.name] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
domains: list,
langs: list,
reranking_query: list,
query: str,
):
filtered_df = filter_models(hidden_df, reranking_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, domains, langs)
return df