Spaces:
Runtime error
Runtime error
File size: 3,606 Bytes
0fe6ac0 4da8e4d 0fe6ac0 85cbd4b 1ab13ba 0fe6ac0 3da6e44 1ab13ba f3e36b8 1ab13ba 0fe6ac0 1ab13ba 0fe6ac0 f3e36b8 9d7b9e6 d24fe2b 0e5008e d24fe2b 0fe6ac0 9d7b9e6 d24fe2b 0e5008e d24fe2b 0fe6ac0 f3e36b8 0fe6ac0 1ab13ba 0fe6ac0 beb43c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# from transformers import pipeline
# import gradio as gr
# AIzaSyDeT8V0nRlVEgmb0fMK4uc0ci8fAcS0Olg
# pipe = pipeline(model="sanchit-gandhi/whisper-small-hi") # change to "your-username/the-name-you-picked"
import requests
import json
import gradio as gr
import requests
import base64
import json
import sys
from fetchPlaylistTrackUris import *
import re
import asyncio
# import streamlit.components.v1 as components
import pickle
import sklearn.preprocessing as pp
from scipy.sparse import csr_matrix
import numpy as np
import pandas as pd
import os
from scipy.sparse import vstack
from recommender import *
import huggingface_hub
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
os.system('rm -rf .git/hooks')
DATASET_REPO_URL_TRAIN = "https://huggingface.co/datasets/nandovallec/df_ps_train_extra"
DATA_FILENAME_TRAIN = "df_ps_train_extra.hdf"
DATA_FILE_TRAIN = os.path.join("data_train", DATA_FILENAME_TRAIN)
DATASET_REPO_URL_MAT = "https://huggingface.co/datasets/nandovallec/giantMatrix_extra"
DATA_FILENAME_MAT = "giantMatrix_extra.pickle"
DATA_FILE_MAT = os.path.join("data_mat", DATA_FILENAME_MAT)
repo_train = Repository(
local_dir="data_train", clone_from=DATASET_REPO_URL_TRAIN, use_auth_token=HF_TOKEN, repo_type="dataset"
)
repo_mat = Repository(
local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN, repo_type="dataset"
)
def get_repo_train():
repo_train = Repository(
local_dir="data_train", clone_from=DATASET_REPO_URL_TRAIN, use_auth_token=HF_TOKEN, repo_type="dataset"
)
def get_repo_mat():
repo_mat = Repository(
local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN,repo_type="dataset"
)
def test(playlist_url, n_rec):
n_rec = int(n_rec)
# playlist_url = "https://open.spotify.com/playlist/7HkaNKWr0GCEznuFSEE67i"
playlist_uri = playlist_url.split('/')[-1]
list_uri = get_playlist_track_uris(playlist_uri)
# uri = "spotify:track:5bjWdBx64POBYiUny759hy"
# uri_link = "https://open.spotify.com/embed/track/" + uri + "?utm_source=generator&theme=0"
# uri_link = "https://open.spotify.com/embed/track/5bjWdBx64POBYiUny759hy?utm_source=generator&theme=0"
# components.iframe(uri_link, height=80)
# i += 1
# if i % 5 == 0:
# time.sleep(1)
#repo_train = get_repo_train()
#repo_mat = get_repo_mat()
uri_links = inference_from_uri(list_uri, MAX_tid=n_rec)
commit_url = repo_train.push_to_hub()
commit_url = repo_mat.push_to_hub()
# uri_links = []
frames = ""
for uri_link in uri_links:
uri_id = uri_link.split(':')[-1]
frames = f'{frames}<iframe id="inlineFrameExample" title="Inline Frame Map" style="width:100%; height: 250px;" src="https://open.spotify.com/embed/track/{uri_id}?utm_source=generator&theme=0"></iframe>'
return frames
with gr.Blocks() as app:
# global mode
url = gr.Textbox(label="Link to playlist")
n_rec = gr.Number(value=5,label="Number of recommendations")
btn = gr.Button(value="Submit")
ifr = gr.HTML()
btn.click(test, inputs=[url, n_rec], outputs=[ifr])
demo = gr.TabbedInterface([app], ["Playlist continuation"])
demo.launch()
# def main():
# spr_sidebar()
# if st.session_state.app_mode == 'Home':
# home_page()
# if st.session_state.app_mode == 'Result':
# result_page()
# if st.session_state.app_mode == 'About' :
# About_page()
# if st.session_state.app_mode == 'Log':
# Log_page()
# # Run main()
# if __name__ == '__main__':
# main()
|