|
import torch |
|
import gradio as gr |
|
import pytube as pt |
|
from transformers import pipeline |
|
from fastspeech2 import FastSpeech2 |
|
|
|
MODEL_NAME = "openai/whisper-large-v2" |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
all_special_ids = pipe.tokenizer.all_special_ids |
|
transcribe_token_id = all_special_ids[-5] |
|
translate_token_id = all_special_ids[-6] |
|
|
|
voice_conversion_model = FastSpeech2.from_pretrained("path/to/pretrained/voice_conversion_model") |
|
|
|
def convert_voice(text): |
|
converted_voice = voice_conversion_model(text) |
|
return converted_voice |
|
|
|
def transcribe(microphone, state, task="transcribe"): |
|
file = microphone |
|
|
|
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] |
|
|
|
text = pipe(file)["text"] |
|
converted_voice = convert_voice(text) |
|
|
|
return state + "\n" + converted_voice, state + "\n" + converted_voice, converted_voice |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(source="microphone", type="filepath", optional=True), |
|
gr.State(value="") |
|
], |
|
outputs=[ |
|
gr.Textbox(lines=15), |
|
gr.State(), |
|
gr.Audio(type="auto") |
|
], |
|
layout="horizontal", |
|
theme="huggingface", |
|
title="Whisper Large V2: Transcribe Audio and Voice Conversion", |
|
live=True, |
|
description=( |
|
"Transcribe long-form microphone or audio inputs and convert the voice with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" |
|
" of arbitrary length and FastSpeech2 for voice conversion." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
mf_transcribe.launch(enable_queue=True) |
|
|