File size: 8,674 Bytes
cc69e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
from polyglot.detect import Detector
from nltk.translate.bleu_score import sentence_bleu

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"

TITLE = "<h1><center>LLaMAX Translator</center></h1>"


model = AutoModelForCausalLM.from_pretrained(
        MODEL,
        torch_dtype=torch.float16,
        device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL)


def lang_detector(text):
    min_chars = 5
    if len(text) < min_chars:
        return "Input text too short"
    try:
        detector = Detector(text).language
        lang_info = str(detector)
        code = re.search(r"name: (\w+)", lang_info).group(1)
        return code
    except Exception as e:
        return f"ERROR:{str(e)}"

def Prompt_template(inst, prompt, query, src_language, trg_language):
    inst = inst.format(src_language=src_language, trg_language=trg_language)
    instruction = f"`{inst}`"
    prompt = (
        f'{prompt}'
        f'### Instruction:\n{instruction}\n'
        f'### Input:\n{query}\n### Response:'
    )
    return prompt

# Unfinished
def chunk_text():
    pass

# Function to calculate BLEU score
def calculate_bleu_score(candidate: str, references: list):
    candidate_tokens = candidate.split()  # Tokenizing the candidate output
    bleu_score = sentence_bleu(references, candidate_tokens)  # Calculating BLEU score
    return bleu_score
    
@spaces.GPU(duration=60)
def translate(

    source_text: str, 

    source_lang: str,

    target_lang: str,

    inst: str, 

    prompt: str, 

    max_length: int,

    temperature: float,

    top_p: float,

    rp: float):
    
    print(f'Text is - {source_text}')
    
    prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
        
    generate_kwargs = dict(
        input_ids=input_ids,
        max_length=max_length, 
        do_sample=True, 
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=rp,    
    )

    outputs = model.generate(**generate_kwargs)
    
    resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    #yield resp[len(prompt):]
    # Calculate BLEU score
    '''

    references = [

        'this is a dog'.split(),

        'it is dog'.split(),

        'dog it is'.split(),

        'a dog, it is'.split() 

    ]

    bleu_score = calculate_bleu_score(resp[len(prompt):], references)  # Calculate BLEU score

    '''
    references = [resp[len(prompt):].split()]  # Use the generated response as the reference
    bleu_score = calculate_bleu_score(resp[len(prompt):], references)  # Calculate BLEU score

    yield resp[len(prompt):], bleu_score

CSS = """

    h1 {

        text-align: center;

        display: block;

        height: 10vh;

        align-content: center;

        font-family: Arial, Helvetica, sans-serif;

    }

    footer {

        visibility: hidden;

    }

    font-family: Arial, Helvetica, sans-serif;

"""

LICENSE = """

Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>

"""

LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
             'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
             'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
             'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
             'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
             'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
             'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
             'Japanese', 'Javanese', \
             'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
             'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
             'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
             'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
             'Occitan', 'Oriya', 'Oromo', \
             'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
             'Romanian', 'Russian', \
             'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
             'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
             'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
             'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']

chatbot = gr.Chatbot(height=600)

with gr.Blocks(theme="soft", css=CSS) as demo:
    gr.Markdown(TITLE)
    with gr.Row():
        with gr.Column(scale=4):
            source_text = gr.Textbox(
                label="Văn bản gốc",
                value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
                "LLaMAX supports translation between more than 100 languages, "+\
                "surpassing the performance of similarly scaled LLMs.",
                lines=10,
            )
            output_text = gr.Textbox(
                label="Văn bản đã được dịch",
                lines=10,
                show_copy_button=True,
            )

            bleu_score_output = gr.Textbox(  # New holder area for BLEU score
                label="BLEU Score",
                lines=10,
                interactive=False,
            )

        with gr.Column(scale=1):
            source_lang = gr.Dropdown(
                label="Ngôn ngữ nguồn",
                value="English",
                choices=LANG_LIST,
            )
            target_lang = gr.Dropdown(
                label="Ngôn ngữ đích",
                value="Vietnamese",
                choices=LANG_LIST,
            )
            max_length = gr.Slider(
                label="Độ dài tối đa",
                minimum=512,
                maximum=8192,
                value=4000,
                step=8,
            )
            temperature = gr.Slider(
                label="Temperature",
                minimum=0,
                maximum=1,
                value=0.3,
                step=0.1,
            )
            top_p = gr.Slider(
                label="top_p",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
            )
            rp = gr.Slider(
                label="Repetition penalty",
                minimum=1.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
            )
            with gr.Accordion("Tùy chọn nâng cao", open=False):
                inst = gr.Textbox(
                    label="Instruction",
                    value="Translate the following sentences from {src_language} to {trg_language}.",
                    lines=3,
                )
                prompt = gr.Textbox(
                    label="Prompt",
                    # Prompt 1
                    #value="""Below is an instruction that describes a task, paired with an input that provides further context.
#Write a response that appropriately completes the request.
### Instruction:
#{instruction}
### Input:
#{query}
### Response:""",#
                    # Prompt 2
                    value="""Below is an instruction that describes a task, paired with an input that provides further context.

Write a response that ensuring accuracy and maintaining the tone and style of the original text.

### Instruction:

{instruction}

### Input:

{query}

### Response:""",
                    lines=8,
                )
                
    with gr.Row():
        submit = gr.Button(value="Submit")
        clear = gr.ClearButton([source_text, output_text])
    gr.Markdown(LICENSE)
    
    #source_text.change(lang_detector, source_text, source_lang)
    #submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])
    submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text, bleu_score_output])

if __name__ == "__main__":
    demo.launch()