Spaces:
Sleeping
Sleeping
File size: 11,681 Bytes
306ec86 cbd8607 306ec86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# boids_streamlit_advanced.py
import streamlit as st
import numpy as np
import plotly.graph_objects as go
import time
# Define the Boid class
class Boid:
def __init__(self, position, velocity):
self.position = np.array(position, dtype='float64')
self.velocity = np.array(velocity, dtype='float64')
self.acceleration = np.zeros(2, dtype='float64')
self.history = []
def update(self, boids, width, height, params):
self.flock(boids, params)
self.velocity += self.acceleration
speed = np.linalg.norm(self.velocity)
if speed > params['max_speed']:
self.velocity = (self.velocity / speed) * params['max_speed']
self.position += self.velocity
self.acceleration = np.zeros(2, dtype='float64')
# Screen wrapping
self.position[0] = self.position[0] % width
self.position[1] = self.position[1] % height
# Add current position to history
if params['draw_trail']:
self.history.append(self.position.copy())
if len(self.history) > params['max_history']:
self.history.pop(0)
def flock(self, boids, params):
self.acceleration = np.zeros(2, dtype='float64')
self.fly_towards_center(boids, params)
self.avoid_others(boids, params)
self.match_velocity(boids, params)
self.limit_speed(params)
self.avoid_boundaries(width=params['width'], height=params['height'], params=params)
def fly_towards_center(self, boids, params):
centering_factor = params['centering_factor']
center_x = 0.0
center_y = 0.0
num_neighbors = 0
for other in boids:
if other is not self and self.distance(other) < params['visual_range']:
center_x += other.position[0]
center_y += other.position[1]
num_neighbors += 1
if num_neighbors > 0:
center_x /= num_neighbors
center_y /= num_neighbors
direction = np.array([center_x, center_y]) - self.position
self.acceleration += centering_factor * direction
def avoid_others(self, boids, params):
min_distance = params['min_distance']
avoid_factor = params['avoid_factor']
move = np.zeros(2, dtype='float64')
for other in boids:
if other is not self and self.distance(other) < min_distance:
move += self.position - other.position
if np.linalg.norm(move) > 0:
move = move / np.linalg.norm(move) * avoid_factor
self.acceleration += move
def match_velocity(self, boids, params):
matching_factor = params['matching_factor']
avg_velocity = np.zeros(2, dtype='float64')
num_neighbors = 0
for other in boids:
if other is not self and self.distance(other) < params['visual_range']:
avg_velocity += other.velocity
num_neighbors += 1
if num_neighbors > 0:
avg_velocity /= num_neighbors
self.acceleration += matching_factor * (avg_velocity - self.velocity)
def limit_speed(self, params):
speed = np.linalg.norm(self.velocity)
if speed > params['max_speed']:
self.velocity = (self.velocity / speed) * params['max_speed']
def avoid_boundaries(self, width, height, params):
margin = params['boundary_margin']
turn_factor = params['boundary_turn_factor']
if self.position[0] < margin:
self.acceleration[0] += turn_factor
elif self.position[0] > width - margin:
self.acceleration[0] -= turn_factor
if self.position[1] < margin:
self.acceleration[1] += turn_factor
elif self.position[1] > height - margin:
self.acceleration[1] -= turn_factor
def distance(self, other):
return np.linalg.norm(self.position - other.position)
# Simulation parameters
params = {
'num_boids': 100,
'visual_range': 75.0,
'min_distance': 20.0,
'centering_factor': 0.005,
'avoid_factor': 0.05,
'matching_factor': 0.05,
'max_speed': 15.0,
'draw_trail': False,
'max_history': 50,
'width': 800,
'height': 600,
'boundary_margin': 100.0,
'boundary_turn_factor': 0.05
}
# Streamlit sidebar for parameter adjustments
st.sidebar.title("Boids Simulation Parameters")
params['num_boids'] = st.sidebar.slider("Number of Boids", 10, 300, 100)
params['visual_range'] = st.sidebar.slider("Visual Range", 10.0, 200.0, 75.0)
params['min_distance'] = st.sidebar.slider("Minimum Separation Distance", 5.0, 100.0, 20.0)
params['centering_factor'] = st.sidebar.slider("Centering Factor", 0.001, 0.02, 0.005)
params['avoid_factor'] = st.sidebar.slider("Avoidance Factor", 0.01, 0.1, 0.05)
params['matching_factor'] = st.sidebar.slider("Matching Factor", 0.01, 0.1, 0.05)
params['max_speed'] = st.sidebar.slider("Maximum Speed", 5.0, 30.0, 15.0)
params['draw_trail'] = st.sidebar.checkbox("Draw Trails")
if params['draw_trail']:
params['max_history'] = st.sidebar.slider("Trail Length", 10, 100, 50)
params['boundary_margin'] = st.sidebar.slider("Boundary Margin", 50.0, 300.0, 100.0)
params['boundary_turn_factor'] = st.sidebar.slider("Boundary Turn Factor", 0.01, 0.2, 0.05)
# Simulation screen size
width, height = 800, 600
params['width'] = width
params['height'] = height
# Initialize Boids
boids = []
for _ in range(params['num_boids']):
position = [np.random.uniform(0, width), np.random.uniform(0, height)]
angle = np.random.uniform(0, 2 * np.pi)
velocity = [np.cos(angle), np.sin(angle)]
boids.append(Boid(position, velocity))
# Plotly graph setup
fig = go.Figure(
layout=go.Layout(
xaxis=dict(range=[0, width], autorange=False, showgrid=False, zeroline=False),
yaxis=dict(range=[0, height], autorange=False, showgrid=False, zeroline=False),
width=width,
height=height,
margin=dict(l=0, r=0, t=0, b=0)
)
)
# Plot initial positions of Boids
scatter = go.Scatter(
x=[boid.position[0] for boid in boids],
y=[boid.position[1] for boid in boids],
mode='markers',
marker=dict(size=8, color='blue')
)
fig.add_trace(scatter)
# Trail trace
if params['draw_trail']:
trail_scatter = go.Scatter(
x=[],
y=[],
mode='lines',
line=dict(color='rgba(0,0,255,0.2)', width=1),
showlegend=False
)
fig.add_trace(trail_scatter)
# Simplified Title
st.title("Boids Simulation")
# Animation display area
animation_placeholder = st.empty()
# Explanation Section Title
st.header("Mathematical Background of the Boids Algorithm")
# Explanation Section
st.markdown("### **Overview of the Boids Algorithm**")
st.markdown("""
The Boids algorithm, proposed by Craig Reynolds in 1986, is a method for simulating flocking behavior in groups of agents called Boids. Each agent follows simple rules to recreate complex group dynamics. The three fundamental rules are:
1. **Separation**: Maintain a suitable distance from nearby Boids to avoid collisions.
2. **Alignment**: Align velocity with the average velocity of neighboring Boids.
3. **Cohesion**: Move towards the average position of neighboring Boids.
""")
st.markdown("### **Mathematical Model**")
st.markdown("""
The movement of each Boid is represented by its position vector \(\mathbf{p}_i(t)\) and velocity vector \(\mathbf{v}_i(t)\). The position and velocity of Boid \(i\) at time \(t\) are described by the following differential equations:
""")
st.latex(r"""
\frac{d\mathbf{p}_i(t)}{dt} = \mathbf{v}_i(t)
""")
st.latex(r"""
\frac{d\mathbf{v}_i(t)}{dt} = \mathbf{a}_i(t)
""")
st.markdown("""
Here, the acceleration \(\mathbf{a}_i(t)\) is the sum of three forces:
""")
st.latex(r"""
\mathbf{a}_i(t) = \mathbf{a}_{\text{separation}} + \mathbf{a}_{\text{alignment}} + \mathbf{a}_{\text{cohesion}}
""")
st.markdown("#### **1. Separation**")
st.markdown("""
To prevent collisions, the separation force is calculated based on the distance \(d_{ij}\) between Boid \(i\) and its neighboring Boids \(j\):
""")
st.latex(r"""
\mathbf{a}_{\text{separation}} = \sum_{j \in N(i)} \frac{\mathbf{p}_i - \mathbf{p}_j}{d_{ij}^2}
""")
st.markdown("where \(N(i)\) is the set of neighboring Boids around Boid \(i\).")
st.markdown("#### **2. Alignment**")
st.markdown("""
The alignment force encourages Boid \(i\) to match the average velocity \(\mathbf{v}_{\text{avg}}\) of its neighbors:
""")
st.latex(r"""
\mathbf{a}_{\text{alignment}} = \frac{\mathbf{v}_{\text{avg}} - \mathbf{v}_i}{\tau}
""")
st.markdown("where \(\tau\) is a scaling parameter.")
st.markdown("#### **3. Cohesion**")
st.markdown("""
The cohesion force steers Boid \(i\) towards the average position \(\mathbf{C}_{\text{avg}}\) of its neighbors:
""")
st.latex(r"""
\mathbf{a}_{\text{cohesion}} = \frac{\mathbf{C}_{\text{avg}} - \mathbf{p}_i}{\sigma}
""")
st.markdown("where \(\sigma\) is a scaling parameter.")
st.markdown("### **Update Rules**")
st.markdown("""
Each Boid's position and velocity are updated based on discrete time steps \(\Delta t\) as follows:
""")
st.latex(r"""
\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \mathbf{a}_i(t) \Delta t
""")
st.latex(r"""
\mathbf{p}_i(t + \Delta t) = \mathbf{p}_i(t) + \mathbf{v}_i(t + \Delta t) \Delta t
""")
st.markdown("""
These equations ensure that each Boid updates its velocity and position based on the combined separation, alignment, and cohesion forces.
""")
st.markdown("### **Additional Features**")
st.markdown("""
This simulation includes the following additional features:
1. **Boundary Avoidance**: When a Boid approaches the edge of the simulation area, it receives a steering force to remain within bounds, preventing it from moving off-screen.
2. **Trail Drawing**: The past positions of each Boid are displayed as trails, allowing visualization of their movement patterns.
""")
st.markdown("### **Parameters and Their Roles**")
st.markdown("""
- **Boundary Margin (\(M\))**: The distance from the edge of the simulation area at which Boids begin to steer away.
- **Boundary Turn Factor (\(\gamma\))**: The strength of the steering force applied when avoiding boundaries.
These parameters allow fine-tuning of Boid behavior near the edges of the simulation area.
""")
# Animation settings
frame_rate = 30 # Frames per second
sleep_time = 1.0 / frame_rate
# Reset button
if st.sidebar.button("Reset Simulation"):
boids = []
for _ in range(params['num_boids']):
position = [np.random.uniform(0, width), np.random.uniform(0, height)]
angle = np.random.uniform(0, 2 * np.pi)
velocity = [np.cos(angle), np.sin(angle)]
boids.append(Boid(position, velocity))
# Animation loop
while True:
# Update Boids
for boid in boids:
boid.update(boids, width, height, params)
# Update Boids' positions
scatter.x = [boid.position[0] for boid in boids]
scatter.y = [boid.position[1] for boid in boids]
# Update trails
if params['draw_trail']:
trail_x = []
trail_y = []
for boid in boids:
trail_x.extend([pos[0] for pos in boid.history])
trail_y.extend([pos[1] for pos in boid.history])
trail_scatter.x = trail_x
trail_scatter.y = trail_y
# Update the Plotly figure
fig.data[0].x = scatter.x
fig.data[0].y = scatter.y
if params['draw_trail']:
fig.data[1].x = trail_scatter.x
fig.data[1].y = trail_scatter.y
# Display the animation
animation_placeholder.plotly_chart(fig, use_container_width=True)
# Control the frame rate
time.sleep(sleep_time)
|