Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import osmnx as ox
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import geopandas as gpd
|
4 |
+
import pandas as pd
|
5 |
+
import random
|
6 |
+
import io
|
7 |
+
from PIL import Image
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
def adjust_color_hex(hex_color, variation=20):
|
11 |
+
"""
|
12 |
+
元の16進数カラーコードに対してランダムな変化を加えた新しいカラーコードを生成します。
|
13 |
+
Parameters:
|
14 |
+
- hex_color (str): 元の16進数カラーコード(例:'#A3BE8C')
|
15 |
+
- variation (int): 各RGB成分に加える変化の最大値(0-255)
|
16 |
+
Returns:
|
17 |
+
- str: 新しい16進数カラーコード
|
18 |
+
"""
|
19 |
+
hex_color = hex_color.lstrip('#')
|
20 |
+
r = int(hex_color[0:2], 16)
|
21 |
+
g = int(hex_color[2:4], 16)
|
22 |
+
b = int(hex_color[4:6], 16)
|
23 |
+
|
24 |
+
r = min(255, max(0, r + random.randint(-variation, variation)))
|
25 |
+
g = min(255, max(0, g + random.randint(-variation, variation)))
|
26 |
+
b = min(255, max(0, b + random.randint(-variation, variation)))
|
27 |
+
|
28 |
+
new_hex_color = '#{:02X}{:02X}{:02X}'.format(r, g, b)
|
29 |
+
return new_hex_color
|
30 |
+
|
31 |
+
def create_artistic_map(lat, lon, distance):
|
32 |
+
"""
|
33 |
+
指定した緯度経度と距離に基づいて、色鮮やかなアート風の地図画像を作成します。
|
34 |
+
Parameters:
|
35 |
+
- lat (float): 中心の緯度
|
36 |
+
- lon (float): 中心の経度
|
37 |
+
- distance (float): 地図の範囲(メートル単位)
|
38 |
+
Returns:
|
39 |
+
- PIL.Image.Image: 生成された地図画像
|
40 |
+
"""
|
41 |
+
point = (lat, lon)
|
42 |
+
|
43 |
+
G = ox.graph_from_point(point, dist=distance, network_type='all')
|
44 |
+
nodes, edges = ox.graph_to_gdfs(G)
|
45 |
+
buildings = ox.features_from_point(point, tags={'building': True}, dist=distance)
|
46 |
+
water = ox.features_from_point(point, tags={'natural': 'water'}, dist=distance)
|
47 |
+
|
48 |
+
greenery_list = []
|
49 |
+
greenery_tags = [
|
50 |
+
{'leisure': 'park'},
|
51 |
+
{'landuse': 'grass'},
|
52 |
+
{'landuse': 'forest'},
|
53 |
+
{'natural': 'wood'}
|
54 |
+
]
|
55 |
+
for tags in greenery_tags:
|
56 |
+
greenery_part = ox.features_from_point(point, tags=tags, dist=distance)
|
57 |
+
if not greenery_part.empty:
|
58 |
+
greenery_list.append(greenery_part)
|
59 |
+
|
60 |
+
if greenery_list:
|
61 |
+
greenery = pd.concat(greenery_list)
|
62 |
+
else:
|
63 |
+
greenery = gpd.GeoDataFrame()
|
64 |
+
|
65 |
+
fig, ax = plt.subplots(figsize=(20, 20))
|
66 |
+
bg_color = adjust_color_hex('#2E3440', variation=10)
|
67 |
+
fig.patch.set_facecolor(bg_color)
|
68 |
+
ax.set_facecolor(bg_color)
|
69 |
+
|
70 |
+
if not greenery.empty:
|
71 |
+
greenery_color = adjust_color_hex('#A3BE8C')
|
72 |
+
greenery.plot(ax=ax, facecolor=greenery_color, edgecolor='none')
|
73 |
+
|
74 |
+
if not water.empty:
|
75 |
+
water_color = adjust_color_hex('#81A1C1')
|
76 |
+
water.plot(ax=ax, facecolor=water_color, edgecolor='none')
|
77 |
+
|
78 |
+
if not buildings.empty:
|
79 |
+
building_color = adjust_color_hex('#D08770')
|
80 |
+
buildings.plot(ax=ax, facecolor=building_color, edgecolor='none')
|
81 |
+
|
82 |
+
if not edges.empty and 'highway' in edges.columns:
|
83 |
+
major_roads = edges[edges['highway'].isin(['motorway', 'trunk', 'primary'])]
|
84 |
+
if not major_roads.empty:
|
85 |
+
major_road_color = adjust_color_hex('#88C0D0')
|
86 |
+
major_roads.plot(ax=ax, linewidth=2, edgecolor=major_road_color)
|
87 |
+
|
88 |
+
medium_roads = edges[edges['highway'].isin(['secondary', 'tertiary'])]
|
89 |
+
if not medium_roads.empty:
|
90 |
+
medium_road_color = adjust_color_hex('#5E81AC')
|
91 |
+
medium_roads.plot(ax=ax, linewidth=1.5, edgecolor=medium_road_color)
|
92 |
+
|
93 |
+
minor_roads = edges[~edges['highway'].isin(['motorway', 'trunk', 'primary', 'secondary', 'tertiary'])]
|
94 |
+
if not minor_roads.empty:
|
95 |
+
minor_road_color = adjust_color_hex('#4C566A')
|
96 |
+
minor_roads.plot(ax=ax, linewidth=1, edgecolor=minor_road_color)
|
97 |
+
|
98 |
+
ax.axis('off')
|
99 |
+
|
100 |
+
buf = io.BytesIO()
|
101 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
|
102 |
+
plt.close()
|
103 |
+
buf.seek(0)
|
104 |
+
img = Image.open(buf)
|
105 |
+
return img
|
106 |
+
|
107 |
+
# Streamlit app setup
|
108 |
+
st.title("Artistic Map Generator")
|
109 |
+
|
110 |
+
st.write("Generate an artistic map based on the specified latitude, longitude, and distance.")
|
111 |
+
|
112 |
+
# User inputs
|
113 |
+
lat = st.number_input("Latitude", value=35.6895)
|
114 |
+
lon = st.number_input("Longitude", value=139.6917)
|
115 |
+
distance = st.number_input("Distance (meters)", value=1000)
|
116 |
+
|
117 |
+
if st.button("Generate Map"):
|
118 |
+
with st.spinner("Generating map..."):
|
119 |
+
img = create_artistic_map(lat, lon, distance)
|
120 |
+
st.image(img, caption="Generated Artistic Map", use_column_width=True)
|