nassga's picture
Update app.py
c0949fd
raw
history blame
1.24 kB
import streamlit as st
import snscrape.modules.twitter as sntwitter
from transformers import pipeline
#Load the model
model = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
def analyze_tweet(tweet_text):
results = model(tweet_text)
return f"Toxicity Score: {results[0]['score']}\nLabel: {results[0]['label']}"
def fetch_tweets(username):
results = []
for tweet in sntwitter.TwitterUserScraper(username).get_items():
tweet_text = tweet.content
analysis_result = analyze_tweet(tweet_text)
results.append(f"Tweet: {tweet_text}\n{analysis_result}\n")
if len(results) >= 10:
break
return "\n".join(results)
st.title("Toxicity Analyzer")
task = st.sidebar.selectbox("Select Task", ("Analyze Tweet", "Fetch Tweets"))
if task == "Analyze Tweet":
tweet_text = st.text_input("Enter the tweet text:")
if st.button("Analyze"):
if tweet_text:
result = analyze_tweet(tweet_text)
st.text(result)
if task == "Fetch Tweets":
username = st.text_input("Enter the Twitter username:")
if st.button("Fetch"):
if username:
results = fetch_tweets(username)
st.text(results)