|
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration |
|
import torch |
|
|
|
|
|
chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
|
|
|
|
|
|
|
|
def converse(user_input, chat_history=[]): |
|
|
|
user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1) |
|
|
|
|
|
chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist() |
|
print (chat_history) |
|
|
|
|
|
response = chat_tkn.decode(chat_history[0]).split("<|endoftext|>") |
|
|
|
print("starting to print response") |
|
print(response) |
|
|
|
|
|
html = "<div class='mybot'>" |
|
for x, mesg in enumerate(response): |
|
if x%2!=0 : |
|
mesg="Alicia:"+mesg |
|
clazz="alicia" |
|
else : |
|
clazz="user" |
|
|
|
|
|
print("value of x") |
|
print(x) |
|
print("message") |
|
print (mesg) |
|
|
|
html += "<div class='mesg {}'> {}</div>".format(clazz, mesg) |
|
html += "</div>" |
|
print(html) |
|
return html, chat_history |
|
|
|
import gradio as grad |
|
|
|
css = """ |
|
.mychat {display:flex;flex-direction:column} |
|
.mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%} |
|
.mesg.user {background-color:lightblue;color:white} |
|
.mesg.alicia {background-color:orange;color:white,align-self:self-end} |
|
.footer {display:none !important} |
|
""" |
|
text=grad.inputs.Textbox(placeholder="Lets chat") |
|
grad.Interface(fn=converse, |
|
theme="default", |
|
inputs=[text, "state"], |
|
outputs=["html", "state"], |
|
css=css).launch() |