Spaces:
Sleeping
Sleeping
File size: 4,961 Bytes
1997c01 d189e4c 1997c01 6866b1f f83432c d8e3d53 83cd13d cded988 d8e3d53 dc4b91d 81225f7 d8e3d53 0b6419d d8e3d53 0b6419d d8e3d53 c024d74 e517d5e f83432c e517d5e 68e8a9a d8e3d53 cba8adc 83cd13d 68e8a9a 3b7be5c 68e8a9a cba8adc c024d74 68e8a9a f83432c a07c0ed f83432c cd11506 b65f10f f83432c cd11506 f83432c cd11506 f83432c a07c0ed f83432c c6a5618 f83432c c6a5618 1997c01 c6a5618 1997c01 83cd13d 19ae57e 1997c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# Accessing the lists
ids_index = inputs['input']['ids_list']
weightsNames = inputs['input']["weights_names"]
# Extract the datatree part which is a list of dictionaries
matrix = inputs['input']["matrix"]
weights = inputs['input']["weights"]
attributeMapperDict = inputs['input']["attributeMapperDict"]
alpha = inputs['input']["alpha"]
alpha = float(alpha)
threshold = inputs['input']["threshold"]
threshold = float(threshold)
df_matrix = pd.DataFrame(matrix).T
df_weights = pd.DataFrame(weights).T
df_matrix = df_matrix.round(0).astype(int)
df_weights = df_weights.round(0).astype(int)
def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=weightsNames) #destinationWeights.columns)
# for weighted accessibility (e. g. areas)
if not destinationWeights.empty:
for col,columnName in zip(destinationWeights.columns, weightsNames):
subdomainsAccessibility[columnName] = (decay_factors * destinationWeights[col].values).sum(axis=1)
# for unweighted accessibility (e. g. points of interest)
else:
for columnName in weightsNames:
subdomainsAccessibility[columnName] = (decay_factors * 1).sum(axis=1)
return subdomainsAccessibility
subdomainsAccessibility = computeAccessibility(df_matrix,weightsNames,df_weights,alpha,threshold)
# make a dictionary to output in grasshopper / etc
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
livability.fillna(0, inplace=True)
# find a set of unique domains, to which subdomains are aggregated
temp = []
for key, values in SubdomainAttributeDict.items():
domain = SubdomainAttributeDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
SubdomainAttributeDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
for domain in domainsUnique:
livability[domain] = 0
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
domain = SubdomainAttributeDict[key]['domain']
sqm_per_employee = str(SubdomainAttributeDict[key]['sqmPerEmpl'])
if key in subdomainsAccessibility.columns:
livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
if any(domain):
for item in domain:
livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability
livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score
return livability
livability = accessibilityToLivability(df_matrix,subdomainsAccessibility,attributeMapperDict)
# Prepare the output
output = {
"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
"livability_dictionary": livability
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch() |