livabilityAspern / imports_utils.py
nastasiasnk's picture
Update imports_utils.py
87f9d6f verified
raw
history blame
11.8 kB
import sys
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import matplotlib
import json
from notion_client import Client
import os
notionToken = os.getenv('notionToken')
notion = Client(auth=notionToken)
speckleToken = os.getenv('speckleToken')
from config import landuseColumnName
from config import subdomainColumnName
from config import sqmPerEmployeeColumnName
from config import thresholdsColumnName
from config import maxPointsColumnName
from config import domainColumnName
# ----------------------------------------------------------------------------------
# query full database
def fetch_all_database_pages(client, database_id):
"""
Fetches all pages from a specified Notion database.
:param client: Initialized Notion client.
:param database_id: The ID of the Notion database to query.
:return: A list containing all pages from the database.
"""
start_cursor = None
all_pages = []
while True:
response = client.databases.query(
**{
"database_id": database_id,
"start_cursor": start_cursor
}
)
all_pages.extend(response['results'])
# Check if there's more data to fetch
if response['has_more']:
start_cursor = response['next_cursor']
else:
break
return all_pages
def get_property_value(page, property_name):
"""
Extracts the value from a specific property in a Notion page based on its type.
:param page: The Notion page data as retrieved from the API.
:param property_name: The name of the property whose value is to be fetched.
:return: The value or values contained in the specified property, depending on type.
"""
# Check if the property exists in the page
if property_name not in page['properties']:
return None # or raise an error if you prefer
property_data = page['properties'][property_name]
prop_type = property_data['type']
# Handle 'title' and 'rich_text' types
if prop_type in ['title', 'rich_text']:
return ''.join(text_block['text']['content'] for text_block in property_data[prop_type])
# Handle 'number' type
elif prop_type == 'number':
return property_data[prop_type]
# Handle 'select' type
elif prop_type == 'select':
return property_data[prop_type]['name'] if property_data[prop_type] else None
# Handle 'multi_select' type
elif prop_type == 'multi_select':
return [option['name'] for option in property_data[prop_type]]
# Handle 'date' type
elif prop_type == 'date':
if property_data[prop_type]['end']:
return (property_data[prop_type]['start'], property_data[prop_type]['end'])
else:
return property_data[prop_type]['start']
# Handle 'relation' type
elif prop_type == 'relation':
return [relation['id'] for relation in property_data[prop_type]]
# Handle 'people' type
elif prop_type == 'people':
return [person['name'] for person in property_data[prop_type] if 'name' in person]
# Add more handlers as needed for other property types
else:
# Return None or raise an error for unsupported property types
return None
def get_page_by_id(notion_db_pages, page_id):
for pg in notion_db_pages:
if pg["id"] == page_id:
return pg
def fetchDomainMapper (luAttributePages):
lu_domain_mapper ={}
#subdomains_unique = []
for page in luAttributePages:
value_landuse = get_property_value(page, landuseColumnName)
value_subdomain = get_property_value(page, subdomainColumnName)
origin = "false" if not get_property_value(page, "is_origin_mask") else get_property_value(page, "is_origin_mask")
if value_subdomain and value_landuse:
lu_domain_mapper[value_landuse] = {
'subdomain livability': value_subdomain,
'is origin': origin
}
#lu_domain_mapper[value_landuse] = value_subdomain
#if value_subdomain != "":
#subdomains_unique.append(value_subdomain)
#subdomains_unique = list(set(subdomains_unique))
return lu_domain_mapper
def fetchSubdomainMapper (livabilityAttributePages):
attribute_mapper ={}
domains_unique = []
for page in livabilityAttributePages:
subdomain = get_property_value(page, subdomainColumnName)
sqm_per_employee = get_property_value(page, sqmPerEmployeeColumnName)
thresholds = get_property_value(page, thresholdsColumnName)
max_points = get_property_value(page, maxPointsColumnName)
domain = get_property_value(page, domainColumnName)
if thresholds:
attribute_mapper[subdomain] = {
'sqmPerEmpl': sqm_per_employee if sqm_per_employee != "" else 0,
'thresholds': thresholds,
'max_points': max_points,
'domain': [domain if domain != "" else 0]
}
if domain != "":
domains_unique.append(domain)
#domains_unique = list(set(domains_unique))
return attribute_mapper
def fetchDistanceMatrices (stream_distance_matrices):
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrices["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
return distance_matrices
def splitDictByStrFragmentInColumnName(original_dict, substrings):
result_dicts = {substring: {} for substring in substrings}
for key, nested_dict in original_dict.items():
for subkey, value in nested_dict.items():
for substring in substrings:
if substring in subkey:
if key not in result_dicts[substring]:
result_dicts[substring][key] = {}
result_dicts[substring][key][subkey] = value
return result_dicts
def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList):
df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList)
for subdomain in UniqueSubdomainsList:
for lu, attributes in LanduseToSubdomainDict.items():
if attributes["subdomain livability"] == subdomain:
if lu in LanduseDf.columns:
if LanduseDf[lu].notna().any():
df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0)
else:
print(f"Warning: Column '{lu}' not found in landuse database")
return df_LivabilitySubdomainsArea
def FindWorkplacesNumber (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
for subdomain in UniqueSubdomainsList:
for key, value_list in SubdomainAttributeDict.items():
if value_list['sqmPerEmpl']:
sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl'])
if key in destinationWeights.columns and key == subdomain:
if sqm_per_empl > 0:
df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
else:
df_LivabilitySubdomainsWorkplaces['jobs'] += 0
else:
df_LivabilitySubdomainsWorkplaces['jobs'] += 0
return df_LivabilitySubdomainsWorkplaces
def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
# for weighted accessibility (e. g. areas)
if destinationWeights is not None: #not destinationWeights.empty:
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
for col in destinationWeights.columns:
subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
else:
print("Destination weights parameter is None")
return subdomainsAccessibility
def computeAccessibility_pointOfInterest (DistanceMatrix, columnName, alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
pointOfInterestAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=[columnName])
for col in pointOfInterestAccessibility.columns:
pointOfInterestAccessibility[col] = (decay_factors * 1).sum(axis=1)
return pointOfInterestAccessibility
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,accessibilityInputs, SubdomainAttributeDict,UniqueDomainsList):
livability = pd.DataFrame(index=DistanceMatrix.index, columns=accessibilityInputs.columns)
for domain in UniqueDomainsList:
livability[domain] = 0
livability.fillna(0, inplace=True)
templist = []
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
domains = [str(item) for item in SubdomainAttributeDict[key]['domain']]
if key in accessibilityInputs.columns and key != 'commercial':
livability_score = remap(accessibilityInputs[key], 0, threshold, 0, max_livability)
livability.loc[accessibilityInputs[key] >= threshold, key] = max_livability
livability.loc[accessibilityInputs[key] < threshold, key] = livability_score
if any(domains):
for domain in domains:
if domain != 'Workplaces':
livability.loc[accessibilityInputs[key] >= threshold, domain] += max_livability
livability.loc[accessibilityInputs[key] < threshold, domain] += livability_score
elif key == 'commercial':
livability_score = remap(accessibilityInputs['jobs'], 0, threshold, 0, max_livability)
livability.loc[accessibilityInputs['jobs'] >= threshold, domains[0]] = max_livability
livability.loc[accessibilityInputs['jobs'] < threshold, domains[0]] = livability_score
return livability