livabilityAspern / imports_utils.py
nastasiasnk's picture
Update imports_utils.py
223fdb8 verified
raw
history blame
7.71 kB
!pip install requests
!pip install specklepy
import sys
# delete (if it already exists) , clone repro
!rm -rf RECODE_speckle_utils
!git clone https://github.com/SerjoschDuering/RECODE_speckle_utils
sys.path.append('/content/RECODE_speckle_utils')
# import from repro
import speckle_utils
import data_utils
#import other libaries
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import math
import matplotlib
from google.colab import files
import json
!pip install notion-client
from notion_client import Client as client_notion
# query full database
def fetch_all_database_pages(client, database_id):
"""
Fetches all pages from a specified Notion database.
:param client: Initialized Notion client.
:param database_id: The ID of the Notion database to query.
:return: A list containing all pages from the database.
"""
start_cursor = None
all_pages = []
while True:
response = client.databases.query(
**{
"database_id": database_id,
"start_cursor": start_cursor
}
)
all_pages.extend(response['results'])
# Check if there's more data to fetch
if response['has_more']:
start_cursor = response['next_cursor']
else:
break
return all_pages
def get_property_value(page, property_name):
"""
Extracts the value from a specific property in a Notion page based on its type.
:param page: The Notion page data as retrieved from the API.
:param property_name: The name of the property whose value is to be fetched.
:return: The value or values contained in the specified property, depending on type.
"""
# Check if the property exists in the page
if property_name not in page['properties']:
return None # or raise an error if you prefer
property_data = page['properties'][property_name]
prop_type = property_data['type']
# Handle 'title' and 'rich_text' types
if prop_type in ['title', 'rich_text']:
return ''.join(text_block['text']['content'] for text_block in property_data[prop_type])
# Handle 'number' type
elif prop_type == 'number':
return property_data[prop_type]
# Handle 'select' type
elif prop_type == 'select':
return property_data[prop_type]['name'] if property_data[prop_type] else None
# Handle 'multi_select' type
elif prop_type == 'multi_select':
return [option['name'] for option in property_data[prop_type]]
# Handle 'date' type
elif prop_type == 'date':
if property_data[prop_type]['end']:
return (property_data[prop_type]['start'], property_data[prop_type]['end'])
else:
return property_data[prop_type]['start']
# Handle 'relation' type
elif prop_type == 'relation':
return [relation['id'] for relation in property_data[prop_type]]
# Handle 'people' type
elif prop_type == 'people':
return [person['name'] for person in property_data[prop_type] if 'name' in person]
# Add more handlers as needed for other property types
else:
# Return None or raise an error for unsupported property types
return None
def get_page_by_id(notion_db_pages, page_id):
for pg in notion_db_pages:
if pg["id"] == page_id:
return pg
"""
# define variables
# MAIN DISTANCE MATRIX
branch_name_dm = "graph_geometry/distance_matrix"
commit_id_dm = "cfde6f4ba4" # ebcfc50abe/commits/cfde6f4ba4
dm_activityNodes = "activity_node+distance_matrix_ped_mm_noEntr"
dm_transportStops = "an_stations+distance_matrix_ped_mm_art_noEntr"
# LAND USE ATTRIBUTES
branch_name_lu = "graph_geometry/activity_nodes_with_land_use"
commit_id_lu = "13ae6cdd30"
# LIVABILITY DOMAINS ATTRIBUTES
notion_lu_domains = "407c2fce664f4dde8940bb416780a86d"
notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9"
#def streamNotionDatabases (notionToken, landuseDatabaseId, subdomainAttributesDatabaseId):
if notionToken:
notion = client_notion(auth=userdata.get(notionToken))
lu_attributes = fetch_all_database_pages(notion, landuseDatabaseId)
livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId)
else:
print ("Notion token is not provided")
"""
def streamMatrices (speckleToken, stream_id, branch_name_dm, commit_id):
CLIENT = SpeckleClient(host="https://speckle.xyz/")
CLIENT.authenticate_with_token(token=userdata.get(speckleToken))
#stream_id="ebcfc50abe"
stream_distance_matrices = speckle_utils.getSpeckleStream(stream_id,
branch_name_dm,
CLIENT,
commit_id = commit_id_dm)
return stream_distance_matrices
def fetchDomainMapper (luAttributePages):
lu_domain_mapper ={}
subdomains_unique = []
for page in lu_attributes:
value_landuse = get_property_value(page, "LANDUSE")
value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY")
if value_subdomain and value_landuse:
lu_domain_mapper[value_landuse] = value_subdomain
if value_subdomain != "":
subdomains_unique.append(value_subdomain)
#subdomains_unique = list(set(subdomains_unique))
return lu_domain_mapper
def fetchSubdomainMapper (livability_attributes):
attribute_mapper ={}
domains_unique = []
for page in domain_attributes:
subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE")
sqm_per_employee = get_property_value(page, "SQM PER EMPL")
thresholds = get_property_value(page, "MANHATTAN THRESHOLD")
max_points = get_property_value(page, "LIVABILITY MAX POINT")
domain = get_property_value(page, "DOMAIN")
if thresholds:
attribute_mapper[subdomain] = {
'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0],
'thresholds': thresholds,
'max_points': max_points,
'domain': [domain if domain != "" else 0]
}
if domain != "":
domains_unique.append(domain)
#domains_unique = list(set(domains_unique))
return attribute_mapper
def fetchDistanceMatrices (stream_distance_matrices):
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrice["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
return distance_matrices
#df_dm_transport = distance_matrices[dm_transportStops]