nastasiasnk's picture
Update app.py
c6a5618 verified
raw
history blame
4.93 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# Accessing the lists
ids_index = inputs['input']['ids_list']
weightsNames = inputs['input']["weights_names"]
# Extract the datatree part which is a list of dictionaries
matrix = inputs['input']["matrix"]
weights = inputs['input']["weights"]
weights = inputs['input']["weights"]
alpha = inputs['input']["alpha"]
alpha = float(alpha)
threshold = inputs['input']["threshold"]
threshold = float(threshold)
df_matrix = pd.DataFrame(matrix).T
df_weights = pd.DataFrame(weights).T
df_matrix = df_matrix.round(0).astype(int)
df_weights = df_weights.round(0).astype(int)
def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=weightsNames) #destinationWeights.columns)
# for weighted accessibility (e. g. areas)
if not destinationWeights.empty:
for col,columnName in zip(destinationWeights.columns, weightsNames):
subdomainsAccessibility[columnName] = (decay_factors * destinationWeights[col].values).sum(axis=1)
# for unweighted accessibility (e. g. points of interest)
else:
for columnName in weightsNames:
subdomainsAccessibility[columnName] = (decay_factors * 1).sum(axis=1)
return subdomainsAccessibility
subdomainsAccessibility = computeAccessibility(df_matrix,weightsNames,df_weights,alpha,threshold)
# make a dictionary to output in grasshopper / etc
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
livability.fillna(0, inplace=True)
# find a set of unique domains, to which subdomains are aggregated
temp = []
for key, values in SubdomainAttributeDict.items():
domain = SubdomainAttributeDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
SubdomainAttributeDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
for domain in domainsUnique:
livability[domain] = 0
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
domain = SubdomainAttributeDict[key]['domain']
sqm_per_employee = str(SubdomainAttributeDict[key]['sqmPerEmpl'])
if key in subdomainsAccessibility.columns:
livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
if any(domain):
for item in domain:
livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability
livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score
return livability
livability = accessibilityToLivability(df_matrix,subdomainsAccessibility,attributeMapperDict)
# Prepare the output
output = {
"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
"livability_dictionary": livability
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch()