livabilityAspern / imports_utils.py
nastasiasnk's picture
Update imports_utils.py
e2acca9 verified
raw
history blame
7.19 kB
import sys
"""
# delete (if it already exists) , clone repro
!rm -rf RECODE_speckle_utils
!git clone https://github.com/SerjoschDuering/RECODE_speckle_utils
sys.path.append('/content/RECODE_speckle_utils')
"""
# import from repro
#import speckle_utils
#import data_utils
#import other libaries
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#import seaborn as sns
import math
import matplotlib
#from google.colab import files
import json
from notion_client import Client
import os
# Fetch the token securely from environment variables
notion_token = os.getenv('notionToken')
# Initialize the Notion client with your token
notion = Client(auth=notion_token)
# ----------------------------------------------------------------------------------
speckleToken = os.getenv('speckleToken')
if speckleToken is None:
raise Exception("Speckle token not found")
else:
print("Speckle token found successfully!")
#CLIENT = SpeckleClient(host="https://speckle.xyz/")
#CLIENT.authenticate_with_token(token=userdata.get(speckleToken))
CLIENT = SpeckleClient(host="https://speckle.xyz/")
account = get_default_account()
CLIENT.authenticate(token=speckleToken)
# query full database
def fetch_all_database_pages(client, database_id):
"""
Fetches all pages from a specified Notion database.
:param client: Initialized Notion client.
:param database_id: The ID of the Notion database to query.
:return: A list containing all pages from the database.
"""
start_cursor = None
all_pages = []
while True:
response = client.databases.query(
**{
"database_id": database_id,
"start_cursor": start_cursor
}
)
all_pages.extend(response['results'])
# Check if there's more data to fetch
if response['has_more']:
start_cursor = response['next_cursor']
else:
break
return all_pages
def get_property_value(page, property_name):
"""
Extracts the value from a specific property in a Notion page based on its type.
:param page: The Notion page data as retrieved from the API.
:param property_name: The name of the property whose value is to be fetched.
:return: The value or values contained in the specified property, depending on type.
"""
# Check if the property exists in the page
if property_name not in page['properties']:
return None # or raise an error if you prefer
property_data = page['properties'][property_name]
prop_type = property_data['type']
# Handle 'title' and 'rich_text' types
if prop_type in ['title', 'rich_text']:
return ''.join(text_block['text']['content'] for text_block in property_data[prop_type])
# Handle 'number' type
elif prop_type == 'number':
return property_data[prop_type]
# Handle 'select' type
elif prop_type == 'select':
return property_data[prop_type]['name'] if property_data[prop_type] else None
# Handle 'multi_select' type
elif prop_type == 'multi_select':
return [option['name'] for option in property_data[prop_type]]
# Handle 'date' type
elif prop_type == 'date':
if property_data[prop_type]['end']:
return (property_data[prop_type]['start'], property_data[prop_type]['end'])
else:
return property_data[prop_type]['start']
# Handle 'relation' type
elif prop_type == 'relation':
return [relation['id'] for relation in property_data[prop_type]]
# Handle 'people' type
elif prop_type == 'people':
return [person['name'] for person in property_data[prop_type] if 'name' in person]
# Add more handlers as needed for other property types
else:
# Return None or raise an error for unsupported property types
return None
def get_page_by_id(notion_db_pages, page_id):
for pg in notion_db_pages:
if pg["id"] == page_id:
return pg
"""
def streamMatrices (speckleToken, stream_id, branch_name_dm, commit_id):
#stream_id="ebcfc50abe"
stream_distance_matrices = speckle_utils.getSpeckleStream(stream_id,
branch_name_dm,
CLIENT,
commit_id = commit_id_dm)
return stream_distance_matrices
"""
def fetchDomainMapper (luAttributePages):
lu_domain_mapper ={}
subdomains_unique = []
for page in lu_attributes:
value_landuse = get_property_value(page, "LANDUSE")
value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY")
if value_subdomain and value_landuse:
lu_domain_mapper[value_landuse] = value_subdomain
if value_subdomain != "":
subdomains_unique.append(value_subdomain)
#subdomains_unique = list(set(subdomains_unique))
return lu_domain_mapper
def fetchSubdomainMapper (livability_attributes):
attribute_mapper ={}
domains_unique = []
for page in domain_attributes:
subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE")
sqm_per_employee = get_property_value(page, "SQM PER EMPL")
thresholds = get_property_value(page, "MANHATTAN THRESHOLD")
max_points = get_property_value(page, "LIVABILITY MAX POINT")
domain = get_property_value(page, "DOMAIN")
if thresholds:
attribute_mapper[subdomain] = {
'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0],
'thresholds': thresholds,
'max_points': max_points,
'domain': [domain if domain != "" else 0]
}
if domain != "":
domains_unique.append(domain)
#domains_unique = list(set(domains_unique))
return attribute_mapper
def fetchDistanceMatrices (stream_distance_matrices):
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrice["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
return distance_matrices