nastasiasnk commited on
Commit
2614bf8
·
verified ·
1 Parent(s): 8a12b0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -100,7 +100,7 @@ def test(input_json):
100
 
101
 
102
 
103
- """
104
  # List containing the substrings to check against
105
  tranportModes = ["DRT", "GMT", "HSR"]
106
 
@@ -112,13 +112,14 @@ def test(input_json):
112
  for mode in tranportModes:
113
  if mode in key: # Check if the substring is in the dictionary key
114
  result_dict[substring][key] = value
115
-
116
-
117
 
118
 
119
- df_transport_matrix = pd.DataFrame(transport_matrix).T
120
- df_transport_matrix = df_transport_matrix.round(0).astype(int)
121
- """
 
 
 
122
 
123
  # create a mask based on the matrix size and ids, crop activity nodes to the mask
124
  mask_connected = df_matrix.index.tolist()
@@ -211,9 +212,10 @@ def test(input_json):
211
  def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
212
 
213
  decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
214
- subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
215
  # for weighted accessibility (e. g. areas)
216
  if not destinationWeights.empty:
 
217
  for col in destinationWeights.columns:
218
  subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
219
  # for unweighted accessibility (e. g. points of interest)
 
100
 
101
 
102
 
103
+
104
  # List containing the substrings to check against
105
  tranportModes = ["DRT", "GMT", "HSR"]
106
 
 
112
  for mode in tranportModes:
113
  if mode in key: # Check if the substring is in the dictionary key
114
  result_dict[substring][key] = value
 
 
115
 
116
 
117
+ art = result_dict["DRT"]
118
+
119
+
120
+ df_art_matrix = pd.DataFrame(art).T
121
+ df_art_matrix = df_art_matrix.round(0).astype(int)
122
+
123
 
124
  # create a mask based on the matrix size and ids, crop activity nodes to the mask
125
  mask_connected = df_matrix.index.tolist()
 
212
  def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
213
 
214
  decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
215
+
216
  # for weighted accessibility (e. g. areas)
217
  if not destinationWeights.empty:
218
+ subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
219
  for col in destinationWeights.columns:
220
  subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
221
  # for unweighted accessibility (e. g. points of interest)