nastasiasnk commited on
Commit
91d17a9
1 Parent(s): 166b945

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -19
app.py CHANGED
@@ -51,10 +51,10 @@ import imports_utils
51
  import speckle_utils
52
  import data_utils
53
 
54
- from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId
55
  from imports_utils import speckleToken
56
  from imports_utils import fetchDistanceMatrices
57
- from config import distanceMatrixActivityNodes
58
  #from config import distanceMatrixTransportStops
59
 
60
 
@@ -62,41 +62,53 @@ if speckleToken is None:
62
  raise Exception("Speckle token not found")
63
  else:
64
  print("Speckle token found successfully!")
 
 
65
 
66
  CLIENT = SpeckleClient(host="https://speckle.xyz/")
67
  account = get_default_account()
68
  CLIENT.authenticate_with_token(token=speckleToken)
69
 
70
- streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId)
71
- matrices = fetchDistanceMatrices (streamDistanceMatrices)
72
- streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId)
73
- streamData = streamLanduses["@Data"]["@{0}"]
 
 
 
 
 
 
74
 
75
- df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
76
- df_lu = df_speckle_lu.copy()
77
- df_lu = df_lu.astype(str)
78
- df_lu = df_lu.set_index("uuid", drop=False) # variable, uuid as default
79
 
80
  df_dm = matrices[distanceMatrixActivityNodes]
81
-
82
  df_dm_dict = df_dm.to_dict('index')
83
-
84
-
85
  # Replace infinity with 10000 and NaN values with 0, then convert to integers
86
  df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0)
87
  df_dm = df_dm.apply(pd.to_numeric, errors='coerce')
88
  df_dm = df_dm.round(0).astype(int)
89
 
90
  mask_connected = df_dm.index.tolist()
91
-
 
92
  lu_columns = [] # provided by user? or prefix
93
  for name in df_lu.columns:
94
  if name.startswith("lu+"):
95
  lu_columns.append(name)
 
 
 
96
 
97
- df_lu_filtered = df_lu[lu_columns].loc[mask_connected]
98
- df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
99
- df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
 
 
100
 
101
  df_lu_filtered = df_lu_filtered.replace([np.inf, -np.inf], 10000).fillna(0)
102
  df_lu_filtered = df_lu_filtered.apply(pd.to_numeric, errors='coerce')
@@ -106,8 +118,6 @@ else:
106
 
107
 
108
 
109
-
110
-
111
  def test(input_json):
112
  print("Received input")
113
  # Parse the input JSON string
@@ -121,6 +131,8 @@ def test(input_json):
121
 
122
  from config import useGrasshopperData
123
 
 
 
124
  if useGrasshopperData == True: # grasshopper input
125
  matrix = inputs['input']["matrix"]
126
  landuses = inputs['input']["landuse_areas"] # fetch grasshoper data or not
 
51
  import speckle_utils
52
  import data_utils
53
 
54
+ from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId, distanceMatrixActivityNodes
55
  from imports_utils import speckleToken
56
  from imports_utils import fetchDistanceMatrices
57
+ from config import useSpeckleData
58
  #from config import distanceMatrixTransportStops
59
 
60
 
 
62
  raise Exception("Speckle token not found")
63
  else:
64
  print("Speckle token found successfully!")
65
+
66
+ if useSpeckleData:
67
 
68
  CLIENT = SpeckleClient(host="https://speckle.xyz/")
69
  account = get_default_account()
70
  CLIENT.authenticate_with_token(token=speckleToken)
71
 
72
+ landuses, matrices = getDataFromSpeckle(
73
+ speckleToken,
74
+ streamId,
75
+ dmBranchName,
76
+ luBranchName)
77
+
78
+ #streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId)
79
+ #matrices = fetchDistanceMatrices (streamDistanceMatrices)
80
+ #streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId)
81
+ #streamData = streamLanduses["@Data"]["@{0}"]
82
 
83
+ #df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
84
+ #df_lu = df_speckle_lu.copy()
85
+ #df_lu = df_lu.astype(str)
86
+ #df_lu = df_lu.set_index("uuid", drop=False) # variable, uuid as default
87
 
88
  df_dm = matrices[distanceMatrixActivityNodes]
 
89
  df_dm_dict = df_dm.to_dict('index')
90
+
 
91
  # Replace infinity with 10000 and NaN values with 0, then convert to integers
92
  df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0)
93
  df_dm = df_dm.apply(pd.to_numeric, errors='coerce')
94
  df_dm = df_dm.round(0).astype(int)
95
 
96
  mask_connected = df_dm.index.tolist()
97
+
98
+ """
99
  lu_columns = [] # provided by user? or prefix
100
  for name in df_lu.columns:
101
  if name.startswith("lu+"):
102
  lu_columns.append(name)
103
+
104
+ """
105
+ df_lu_filtered = df_lu.loc[mask_connected]
106
 
107
+ #df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
108
+
109
+ mergeAssetNonAssetLanduse = True
110
+ if mergeAssetNonAssetLanduse:
111
+ df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
112
 
113
  df_lu_filtered = df_lu_filtered.replace([np.inf, -np.inf], 10000).fillna(0)
114
  df_lu_filtered = df_lu_filtered.apply(pd.to_numeric, errors='coerce')
 
118
 
119
 
120
 
 
 
121
  def test(input_json):
122
  print("Received input")
123
  # Parse the input JSON string
 
131
 
132
  from config import useGrasshopperData
133
 
134
+ useGrasshopperData = inputs['input']["useGrasshopper"] # fetch grasshoper data or not
135
+
136
  if useGrasshopperData == True: # grasshopper input
137
  matrix = inputs['input']["matrix"]
138
  landuses = inputs['input']["landuse_areas"] # fetch grasshoper data or not