nastasiasnk commited on
Commit
962d621
·
verified ·
1 Parent(s): eda0b1c

Rename imports_utils to imports_utils.py

Browse files
Files changed (1) hide show
  1. imports_utils → imports_utils.py +98 -94
imports_utils → imports_utils.py RENAMED
@@ -133,15 +133,8 @@ def get_page_by_id(notion_db_pages, page_id):
133
 
134
 
135
 
136
- CLIENT = SpeckleClient(host="https://speckle.xyz/")
137
- CLIENT.authenticate_with_token(token=userdata.get('speckle_token'))
138
-
139
-
140
- notion = client_notion(auth=userdata.get('notion_token'))
141
-
142
-
143
- stream_id="ebcfc50abe"
144
-
145
 
146
  # MAIN DISTANCE MATRIX
147
  branch_name_dm = "graph_geometry/distance_matrix"
@@ -157,94 +150,105 @@ commit_id_lu = "13ae6cdd30"
157
  # LIVABILITY DOMAINS ATTRIBUTES
158
  notion_lu_domains = "407c2fce664f4dde8940bb416780a86d"
159
  notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
 
162
 
163
- lu_attributes = fetch_all_database_pages(notion, notion_lu_domains)
164
-
165
-
166
-
167
- domain_attributes = fetch_all_database_pages(notion, notion_domain_attributes)
168
-
169
-
170
-
171
- lu_domain_mapper ={}
172
-
173
- subdomains_unique = []
174
-
175
- for page in lu_attributes:
176
- value_landuse = get_property_value(page, "LANDUSE")
177
- value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY")
178
- if value_subdomain and value_landuse:
179
- lu_domain_mapper[value_landuse] = value_subdomain
180
- if value_subdomain != "":
181
- subdomains_unique.append(value_subdomain)
182
-
183
- subdomains_unique = list(set(subdomains_unique))
184
-
185
-
186
-
187
-
188
-
189
- attribute_mapper ={}
190
-
191
- domains_unique = []
192
-
193
- for page in domain_attributes:
194
- subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE")
195
- sqm_per_employee = get_property_value(page, "SQM PER EMPL")
196
- thresholds = get_property_value(page, "MANHATTAN THRESHOLD")
197
- max_points = get_property_value(page, "LIVABILITY MAX POINT")
198
- domain = get_property_value(page, "DOMAIN")
199
- if thresholds: #domain !="Transportation" and
200
- attribute_mapper[subdomain] = {
201
- 'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0],
202
- 'thresholds': thresholds,
203
- 'max_points': max_points,
204
- 'domain': [domain if domain != "" else 0]
205
- }
206
-
207
- if domain != "":
208
- domains_unique.append(domain)
209
-
210
- domains_unique = list(set(domains_unique))
211
-
212
-
213
- attribute_mapper[subdomain] = [sqm_per_employee if sqm_per_employee != "" else 0, thresholds,max_points,domain if domain != "" else 0 ]
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
- stream_distance_matrice = speckle_utils.getSpeckleStream(stream_id,
222
- branch_name_dm,
223
- CLIENT,
224
- commit_id = commit_id_dm)
225
-
226
-
227
-
228
-
229
- # navigate to list with speckle objects of interest
230
- distance_matrices = {}
231
- for distM in stream_distance_matrice["@Data"]['@{0}']:
232
- for kk in distM.__dict__.keys():
233
- try:
234
- if kk.split("+")[1].startswith("distance_matrix"):
235
- distance_matrix_dict = json.loads(distM[kk])
236
- origin_ids = distance_matrix_dict["origin_uuid"]
237
- destination_ids = distance_matrix_dict["destination_uuid"]
238
- distance_matrix = distance_matrix_dict["matrix"]
239
- # Convert the distance matrix to a DataFrame
240
- df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
241
-
242
- # i want to add the index & colum names to dist_m_csv
243
- #distance_matrices[kk] = dist_m_csv[kk]
244
- distance_matrices[kk] = df_distances
245
- except:
246
- pass
247
-
248
 
249
  df_dm_transport = distance_matrices[dm_transportStops]
250
 
 
133
 
134
 
135
 
136
+ """
137
+ # define variables
 
 
 
 
 
 
 
138
 
139
  # MAIN DISTANCE MATRIX
140
  branch_name_dm = "graph_geometry/distance_matrix"
 
150
  # LIVABILITY DOMAINS ATTRIBUTES
151
  notion_lu_domains = "407c2fce664f4dde8940bb416780a86d"
152
  notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9"
153
+ """
154
+
155
+
156
+ #def streamNotionDatabases (notionToken, landuseDatabaseId, subdomainAttributesDatabaseId):
157
+ if notionToken:
158
+ notion = client_notion(auth=userdata.get(notionToken))
159
+ lu_attributes = fetch_all_database_pages(notion, landuseDatabaseId)
160
+ livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId)
161
+ else:
162
+ print ("Notion token is not provided")
163
+
164
+
165
+
166
+ def streamMatrices (speckleToken, stream_id, branch_name_dm, commit_id):
167
+ CLIENT = SpeckleClient(host="https://speckle.xyz/")
168
+ CLIENT.authenticate_with_token(token=userdata.get(speckleToken))
169
+
170
+ #stream_id="ebcfc50abe"
171
+ stream_distance_matrices = speckle_utils.getSpeckleStream(stream_id,
172
+ branch_name_dm,
173
+ CLIENT,
174
+ commit_id = commit_id_dm)
175
+
176
+ return stream_distance_matrices
177
+
178
+
179
+
180
+ def fetchDomainMapper (luAttributePages):
181
+
182
+ lu_domain_mapper ={}
183
+ subdomains_unique = []
184
+
185
+ for page in lu_attributes:
186
+ value_landuse = get_property_value(page, "LANDUSE")
187
+ value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY")
188
+ if value_subdomain and value_landuse:
189
+ lu_domain_mapper[value_landuse] = value_subdomain
190
+ if value_subdomain != "":
191
+ subdomains_unique.append(value_subdomain)
192
+
193
+ #subdomains_unique = list(set(subdomains_unique))
194
+ return lu_domain_mapper
195
+
196
+
197
+
198
+ def fetchSubdomainMapper (livability_attributes):
199
+
200
+ attribute_mapper ={}
201
+ domains_unique = []
202
+
203
+ for page in domain_attributes:
204
+ subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE")
205
+ sqm_per_employee = get_property_value(page, "SQM PER EMPL")
206
+ thresholds = get_property_value(page, "MANHATTAN THRESHOLD")
207
+ max_points = get_property_value(page, "LIVABILITY MAX POINT")
208
+ domain = get_property_value(page, "DOMAIN")
209
+ if thresholds:
210
+ attribute_mapper[subdomain] = {
211
+ 'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0],
212
+ 'thresholds': thresholds,
213
+ 'max_points': max_points,
214
+ 'domain': [domain if domain != "" else 0]
215
+ }
216
+ if domain != "":
217
+ domains_unique.append(domain)
218
+
219
+ #domains_unique = list(set(domains_unique))
220
+ return attribute_mapper
221
+
222
+
223
+
224
+
225
+
226
+
227
+ def fetchDistanceMatrices (stream_distance_matrices):
228
+
229
+ # navigate to list with speckle objects of interest
230
+ distance_matrices = {}
231
+ for distM in stream_distance_matrice["@Data"]['@{0}']:
232
+ for kk in distM.__dict__.keys():
233
+ try:
234
+ if kk.split("+")[1].startswith("distance_matrix"):
235
+ distance_matrix_dict = json.loads(distM[kk])
236
+ origin_ids = distance_matrix_dict["origin_uuid"]
237
+ destination_ids = distance_matrix_dict["destination_uuid"]
238
+ distance_matrix = distance_matrix_dict["matrix"]
239
+ # Convert the distance matrix to a DataFrame
240
+ df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
241
+
242
+ # i want to add the index & colum names to dist_m_csv
243
+ #distance_matrices[kk] = dist_m_csv[kk]
244
+ distance_matrices[kk] = df_distances
245
+ except:
246
+ pass
247
+
248
+ return distance_matrices
249
 
250
 
251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
 
253
  df_dm_transport = distance_matrices[dm_transportStops]
254