nastasiasnk commited on
Commit
9c82a2c
1 Parent(s): a0d7355

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -166,10 +166,10 @@ def test(input_json):
166
 
167
  df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
168
 
169
- for domain in UniqueSubdomainsList:
170
  for key, value_list in SubdomainAttributeDict.items():
171
- sqm_per_empl = float(SubdomainAttributeDict[domain]['sqmPerEmpl'][0])
172
- if key in destinationWeights.columns and key == domain:
173
  if sqm_per_empl > 0:
174
  df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
175
  else:
@@ -217,8 +217,6 @@ def test(input_json):
217
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict,UniqueDomainsList):
218
 
219
  livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
220
- #livability.drop(columns='jobs', inplace=True)
221
- #livability["Workplaces"] = 0
222
 
223
  for domain in UniqueDomainsList:
224
  livability[domain] = 0
@@ -240,7 +238,7 @@ def test(input_json):
240
  livability.loc[subdomainsAccessibility['jobs'] >= threshold, 'Workplaces'] = max_livability
241
  livability.loc[subdomainsAccessibility['jobs'] < threshold, 'Workplaces'] = livability_score
242
 
243
- if key in subdomainsAccessibility.columns:
244
  livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
245
  livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
246
  livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
 
166
 
167
  df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
168
 
169
+ for subdomain in UniqueSubdomainsList:
170
  for key, value_list in SubdomainAttributeDict.items():
171
+ sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl'][0])
172
+ if key in destinationWeights.columns and key == subdomain:
173
  if sqm_per_empl > 0:
174
  df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
175
  else:
 
217
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict,UniqueDomainsList):
218
 
219
  livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
 
 
220
 
221
  for domain in UniqueDomainsList:
222
  livability[domain] = 0
 
238
  livability.loc[subdomainsAccessibility['jobs'] >= threshold, 'Workplaces'] = max_livability
239
  livability.loc[subdomainsAccessibility['jobs'] < threshold, 'Workplaces'] = livability_score
240
 
241
+ elif key in subdomainsAccessibility.columns and key != 'commercial':
242
  livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
243
  livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
244
  livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score