nastasiasnk commited on
Commit
aebe9d6
·
verified ·
1 Parent(s): f83432c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -49
app.py CHANGED
@@ -62,55 +62,9 @@ def test(input_json):
62
 
63
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
64
 
65
- """
66
- Converts accessibility measures into livability scores for various urban subdomains
67
- using a specified scaling mechanism based on predefined thresholds and maximum points.
68
-
69
- This function takes a DataFrame of total accessibility per subdomain and remaps these values
70
- into livability scores based on thresholds and maximum scores provided in a dictionary.
71
- The output DataFrame retains the original order of indices from a reference distance matrix.
72
- New columns for combined values such as 'social infrastructure' and 'transportation' are added,
73
- aggregating scores from relevant subdomains.
74
-
75
- Parameters:
76
- - DistanceMatrix (pd.DataFrame): DataFrame used to maintain the order of indices.
77
- - totalAccessibility (pd.DataFrame): DataFrame containing accessibility scores for various subdomains.
78
- - SubdomainAttributeDict (dict): Dictionary where each key is a subdomain and each value is a list
79
- where the first element is the minimum threshold for good accessibility, and the second element is
80
- the maximum livability score for that threshold.
81
-
82
- Returns:
83
- - pd.DataFrame: A new DataFrame with the same indices as DistanceMatrix and columns corresponding to
84
- totalAccessibility, enhanced with additional columns for combined livability metrics.
85
-
86
- The function processes each subdomain defined in SubdomainAttributeDict. If the accessibility in a
87
- subdomain exceeds the threshold, the maximum livability score is assigned. Otherwise, a livability
88
- score is calculated based on linear interpolation between 0 and the threshold. Combined metrics
89
- for broader categories like 'social infrastructure' are computed by summing up relevant subdomain
90
- scores.
91
-
92
- Example:
93
- --------
94
- # Define the DistanceMatrix and totalAccessibility with example data
95
- DistanceMatrix = pd.DataFrame(index=[0, 1, 2])
96
- totalAccessibility = pd.DataFrame({'jobs': [100, 150, 200], 'health': [80, 90, 95]}, index=[0, 1, 2])
97
- SubdomainAttributeDict = {'jobs': [100, 50], 'health': [80, 40]}
98
-
99
- # Call the function
100
- livability_scores = accessibilityToLivability(DistanceMatrix, totalAccessibility, SubdomainAttributeDict)
101
- print(livability_scores)
102
-
103
- Notes:
104
- ------
105
- - The function assumes all columns in totalAccessibility are represented in SubdomainAttributeDict unless
106
- explicitly handled otherwise within the function.
107
- """
108
-
109
  livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
110
- # livability["Workplaces"] = 0
111
  livability.fillna(0, inplace=True)
112
 
113
-
114
  # find a set of unique domains, to which subdomains are aggregated
115
 
116
  temp = []
@@ -154,9 +108,6 @@ def test(input_json):
154
 
155
 
156
 
157
-
158
-
159
-
160
 
161
 
162
 
 
62
 
63
  def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
 
66
  livability.fillna(0, inplace=True)
67
 
 
68
  # find a set of unique domains, to which subdomains are aggregated
69
 
70
  temp = []
 
108
 
109
 
110
 
 
 
 
111
 
112
 
113