nastasiasnk commited on
Commit
fbce734
1 Parent(s): a68aa72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -20
app.py CHANGED
@@ -217,36 +217,22 @@ def test(input_json):
217
 
218
 
219
  from imports_utils import landusesToSubdomains
220
-
221
- """
222
- def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList):
223
- df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList)
224
 
225
- for subdomain in UniqueSubdomainsList:
226
- for lu, lu_subdomain in LanduseToSubdomainDict.items():
227
- if lu_subdomain == subdomain:
228
- if lu in LanduseDf.columns:
229
- df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0)
230
- else:
231
- print(f"Warning: Column '{lu}' not found in landuse database")
232
-
233
- return df_LivabilitySubdomainsArea
234
 
235
-
236
- """
237
  LivabilitySubdomainsWeights = landusesToSubdomains(df_dm,df_landuses_filtered,landuseMapperDict,subdomainsUnique)
238
 
239
 
240
 
241
 
242
-
243
- def FindWorkplaces (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
244
 
245
  df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
246
 
247
  for subdomain in UniqueSubdomainsList:
248
  for key, value_list in SubdomainAttributeDict.items():
249
- sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl']) #[0])
250
  if key in destinationWeights.columns and key == subdomain:
251
  if sqm_per_empl > 0:
252
  df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
@@ -255,8 +241,8 @@ def test(input_json):
255
 
256
  return df_LivabilitySubdomainsWorkplaces
257
 
258
-
259
- WorkplacesNumber = FindWorkplaces(df_dm,attributeMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
260
 
261
  # prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs
262
  LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1)
 
217
 
218
 
219
  from imports_utils import landusesToSubdomains
220
+ from imports_utils import FindWorkplacesNumber
 
 
 
221
 
 
 
 
 
 
 
 
 
 
222
 
 
 
223
  LivabilitySubdomainsWeights = landusesToSubdomains(df_dm,df_landuses_filtered,landuseMapperDict,subdomainsUnique)
224
 
225
 
226
 
227
 
228
+ """
229
+ def FindWorkplacesNumber (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
230
 
231
  df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
232
 
233
  for subdomain in UniqueSubdomainsList:
234
  for key, value_list in SubdomainAttributeDict.items():
235
+ sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl'])
236
  if key in destinationWeights.columns and key == subdomain:
237
  if sqm_per_empl > 0:
238
  df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
 
241
 
242
  return df_LivabilitySubdomainsWorkplaces
243
 
244
+ """
245
+ WorkplacesNumber = FindWorkplacesNumber(df_dm,attributeMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
246
 
247
  # prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs
248
  LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1)