import sys from specklepy.api.client import SpeckleClient from specklepy.api.credentials import get_default_account, get_local_accounts from specklepy.transports.server import ServerTransport from specklepy.api import operations from specklepy.objects.geometry import Polyline, Point from specklepy.objects import Base import numpy as np import pandas as pd import matplotlib.pyplot as plt import math import matplotlib import json from notion_client import Client import os notionToken = os.getenv('notionToken') notion = Client(auth=notionToken) speckleToken = os.getenv('speckleToken') from config import landuseColumnName from config import subdomainColumnName from config import sqmPerEmployeeColumnName from config import thresholdsColumnName from config import maxPointsColumnName from config import domainColumnName # ---------------------------------------------------------------------------------- # query full database def fetch_all_database_pages(client, database_id): """ Fetches all pages from a specified Notion database. :param client: Initialized Notion client. :param database_id: The ID of the Notion database to query. :return: A list containing all pages from the database. """ start_cursor = None all_pages = [] while True: response = client.databases.query( **{ "database_id": database_id, "start_cursor": start_cursor } ) all_pages.extend(response['results']) # Check if there's more data to fetch if response['has_more']: start_cursor = response['next_cursor'] else: break return all_pages def get_property_value(page, property_name): """ Extracts the value from a specific property in a Notion page based on its type. :param page: The Notion page data as retrieved from the API. :param property_name: The name of the property whose value is to be fetched. :return: The value or values contained in the specified property, depending on type. """ # Check if the property exists in the page if property_name not in page['properties']: return None # or raise an error if you prefer property_data = page['properties'][property_name] prop_type = property_data['type'] # Handle 'title' and 'rich_text' types if prop_type in ['title', 'rich_text']: return ''.join(text_block['text']['content'] for text_block in property_data[prop_type]) # Handle 'number' type elif prop_type == 'number': return property_data[prop_type] # Handle 'select' type elif prop_type == 'select': return property_data[prop_type]['name'] if property_data[prop_type] else None # Handle 'multi_select' type elif prop_type == 'multi_select': return [option['name'] for option in property_data[prop_type]] # Handle 'date' type elif prop_type == 'date': if property_data[prop_type]['end']: return (property_data[prop_type]['start'], property_data[prop_type]['end']) else: return property_data[prop_type]['start'] # Handle 'relation' type elif prop_type == 'relation': return [relation['id'] for relation in property_data[prop_type]] # Handle 'people' type elif prop_type == 'people': return [person['name'] for person in property_data[prop_type] if 'name' in person] # Add more handlers as needed for other property types else: # Return None or raise an error for unsupported property types return None def get_page_by_id(notion_db_pages, page_id): for pg in notion_db_pages: if pg["id"] == page_id: return pg def fetchDomainMapper (luAttributePages): lu_domain_mapper ={} #subdomains_unique = [] for page in luAttributePages: value_landuse = get_property_value(page, landuseColumnName) value_subdomain = get_property_value(page, subdomainColumnName) origin = "false" if not get_property_value(page, "is_origin_mask") else get_property_value(page, "is_origin_mask") if value_subdomain and value_landuse: lu_domain_mapper[value_landuse] = { 'subdomain livability': value_subdomain, 'is origin': origin } #lu_domain_mapper[value_landuse] = value_subdomain #if value_subdomain != "": #subdomains_unique.append(value_subdomain) #subdomains_unique = list(set(subdomains_unique)) return lu_domain_mapper def fetchSubdomainMapper (livabilityAttributePages): attribute_mapper ={} domains_unique = [] for page in livabilityAttributePages: subdomain = get_property_value(page, subdomainColumnName) sqm_per_employee = get_property_value(page, sqmPerEmployeeColumnName) thresholds = get_property_value(page, thresholdsColumnName) max_points = get_property_value(page, maxPointsColumnName) domain = get_property_value(page, domainColumnName) if thresholds: attribute_mapper[subdomain] = { 'sqmPerEmpl': sqm_per_employee if sqm_per_employee != "" else 0, 'thresholds': thresholds, 'max_points': max_points, 'domain': [domain if domain != "" else 0] } if domain != "": domains_unique.append(domain) #domains_unique = list(set(domains_unique)) return attribute_mapper def fetchDistanceMatrices (stream_distance_matrices): # navigate to list with speckle objects of interest distance_matrices = {} for distM in stream_distance_matrices["@Data"]['@{0}']: for kk in distM.__dict__.keys(): try: if kk.split("+")[1].startswith("distance_matrix"): distance_matrix_dict = json.loads(distM[kk]) origin_ids = distance_matrix_dict["origin_uuid"] destination_ids = distance_matrix_dict["destination_uuid"] distance_matrix = distance_matrix_dict["matrix"] # Convert the distance matrix to a DataFrame df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids) # i want to add the index & colum names to dist_m_csv #distance_matrices[kk] = dist_m_csv[kk] distance_matrices[kk] = df_distances except: pass return distance_matrices def splitDictByStrFragmentInColumnName(original_dict, substrings): result_dicts = {substring: {} for substring in substrings} for key, nested_dict in original_dict.items(): for subkey, value in nested_dict.items(): for substring in substrings: if substring in subkey: if key not in result_dicts[substring]: result_dicts[substring][key] = {} result_dicts[substring][key][subkey] = value return result_dicts def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList): df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList) for subdomain in UniqueSubdomainsList: for lu, attributes in LanduseToSubdomainDict.items(): if attributes["subdomain livability"] == subdomain: if lu in LanduseDf.columns: if LanduseDf[lu].notna().any(): df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0) else: print(f"Warning: Column '{lu}' not found in landuse database") return df_LivabilitySubdomainsArea def FindWorkplacesNumber (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ): df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs']) for subdomain in UniqueSubdomainsList: for key, value_list in SubdomainAttributeDict.items(): sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl']) if key in destinationWeights.columns and key == subdomain: if sqm_per_empl > 0: df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0) else: df_LivabilitySubdomainsWorkplaces['jobs'] += 0 return df_LivabilitySubdomainsWorkplaces def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600): decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold) # for weighted accessibility (e. g. areas) if destinationWeights is not None: #not destinationWeights.empty: subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns) for col in destinationWeights.columns: subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1) else: print("Destination weights parameter is None") return subdomainsAccessibility def computeAccessibility_pointOfInterest (DistanceMatrix, columnName, alpha = 0.0038, threshold = 600): decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold) pointOfInterestAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=[columnName]) for col in pointOfInterestAccessibility.columns: pointOfInterestAccessibility[col] = (decay_factors * 1).sum(axis=1) return pointOfInterestAccessibility def remap(value, B_min, B_max, C_min, C_max): return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min)) def accessibilityToLivability (DistanceMatrix,accessibilityInputs, SubdomainAttributeDict,UniqueDomainsList): livability = pd.DataFrame(index=DistanceMatrix.index, columns=accessibilityInputs.columns) for domain in UniqueDomainsList: livability[domain] = 0 livability.fillna(0, inplace=True) templist = [] # remap accessibility to livability points for key, values in SubdomainAttributeDict.items(): threshold = float(SubdomainAttributeDict[key]['thresholds']) max_livability = float(SubdomainAttributeDict[key]['max_points']) domains = [str(item) for item in SubdomainAttributeDict[key]['domain']] if key in accessibilityInputs.columns and key != 'commercial': livability_score = remap(accessibilityInputs[key], 0, threshold, 0, max_livability) livability.loc[accessibilityInputs[key] >= threshold, key] = max_livability livability.loc[accessibilityInputs[key] < threshold, key] = livability_score if any(domains): for domain in domains: if domain != 'Workplaces': livability.loc[accessibilityInputs[key] >= threshold, domain] += max_livability livability.loc[accessibilityInputs[key] < threshold, domain] += livability_score elif key == 'commercial': livability_score = remap(accessibilityInputs['jobs'], 0, threshold, 0, max_livability) livability.loc[accessibilityInputs['jobs'] >= threshold, domains[0]] = max_livability livability.loc[accessibilityInputs['jobs'] < threshold, domains[0]] = livability_score return livability