import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad") model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad") def QA_function(context, question): inputs = tokenizer(question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits # Get the most likely beginning of answer with the argmax of the score answer_start = torch.argmax(answer_start_scores) # Get the most likely end of answer with the argmax of the score answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) return answer gradio_ui = gr.Interface(QA_function, [gr.inputs.Textbox(lines=7, label="Context"), gr.inputs.Textbox(label="Question")], gr.outputs.Textbox(label="Answer")) gradio_ui.launch()