import streamlit as st import pandas as pd from github import Github from wordcloud import WordCloud import matplotlib.pyplot as plt import re import datetime g = Github(st.secrets["ACCESS_TOKEN"]) repos = st.secrets["REPO_NAME"].split(",") repos = [g.get_repo(repo) for repo in repos] @st.cache_data def fetch_data(): issues_data = [] for repo in repos: issues = repo.get_issues(state="all") for issue in issues: issues_data.append( { 'Issue': f"{issue.number} - {issue.title}", 'State': issue.state, 'Created at': issue.created_at, 'Closed at': issue.closed_at, 'Last update': issue.updated_at, 'Labels': [label.name for label in issue.labels], 'Reactions': issue.reactions['total_count'], 'Comments': issue.comments, 'URL': issue.html_url, 'Repository': repo.name, } ) return pd.DataFrame(issues_data) def save_data(df): df.to_json("issues.json", orient="records", indent=4, index=False) @st.cache_data def load_data(): try: df = pd.read_json("issues.json", convert_dates=["Created at", "Closed at", "Last update"], date_unit="ms") except: df = fetch_data() save_data(df) return df st.title(f"GitHub Issues Dashboard") status = st.status(label="Loading data...", state="running") df = load_data() today = datetime.date.today() # Section 1: Issue activity metrics st.header("Issue activity metrics") col1, col2, col3 = st.columns(3) state_counts = df['State'].value_counts() open_issues = df.loc[df['State'] == 'open'] closed_issues = df.loc[df['State'] == 'closed'] closed_issues['Time to Close'] = closed_issues['Closed at'] - closed_issues['Created at'] with col1: st.metric(label="Open issues", value=state_counts['open']) with col2: st.metric(label="Closed issues", value=state_counts['closed']) with col3: average_time_to_close = closed_issues['Time to Close'].mean().days st.metric(label="Avg. days to close", value=average_time_to_close) # TODO Plot: number of open vs closed issues by date # st.subheader("Latest bugs 🐞") # bug_issues = open_issues[open_issues["Labels"].apply(lambda labels: "type: bug" in labels)] # bug_issues = bug_issues[["Issue","Labels","Created at","URL"]] # st.dataframe( # bug_issues.sort_values(by="Created at", ascending=False), # hide_index=True, # column_config={ # "Issue": st.column_config.TextColumn("Issue", width=400), # "Labels": st.column_config.TextColumn("Labels"), # "Created at": st.column_config.DatetimeColumn("Created at"), # "URL": st.column_config.LinkColumn("πŸ”—", display_text="πŸ”—") # } # ) st.subheader("Latest updates πŸ“") col1, col2 = st.columns(2) with col1: last_update_date = st.date_input("Last updated after:", value=today - datetime.timedelta(days=7), format="DD-MM-YYYY") last_update_date = datetime.datetime.combine(last_update_date, datetime.datetime.min.time()) # Convert to datetime object with col2: updated_issues = open_issues[open_issues["Last update"] > last_update_date] st.metric("Results:", updated_issues.shape[0]) st.dataframe( updated_issues[["Issue","Labels", "Repository", "Last update","URL"]].sort_values(by="Last update", ascending=False), hide_index=True, # use_container_width=True, column_config={ "Issue": st.column_config.TextColumn("Issue", width="large"), "Labels": st.column_config.ListColumn("Labels", width="large"), "Last update": st.column_config.DatetimeColumn("Last update", width="medium"), "URL": st.column_config.LinkColumn("πŸ”—", display_text="πŸ”—", width="small") } ) st.subheader("Stale issues? πŸ•ΈοΈ") col1, col2 = st.columns(2) with col1: not_updated_since = st.date_input("Not updated since:", value=today - datetime.timedelta(days=90), format="DD-MM-YYYY") not_updated_since = datetime.datetime.combine(not_updated_since, datetime.datetime.min.time()) # Convert to datetime object with col2: stale_issues = open_issues[open_issues["Last update"] < not_updated_since] st.metric("Results:", stale_issues.shape[0]) st.dataframe( stale_issues[["Issue","Labels", "Repository", "Last update","URL"]].sort_values(by="Last update", ascending=True), hide_index=True, # use_container_width=True, column_config={ "Issue": st.column_config.TextColumn("Issue", width="large"), "Labels": st.column_config.ListColumn("Labels", width="large"), "Last update": st.column_config.DatetimeColumn("Last update", width="medium"), "URL": st.column_config.LinkColumn("πŸ”—", display_text="πŸ”—", width="small") } ) # Section 2: Issue classification st.header("Issue classification") col1, col2 = st.columns(2) ## Dataframe: Number of open issues by label. with col1: st.subheader("Top ten labels πŸ”–") label_counts = open_issues.groupby("Repository").apply(lambda x: x.explode("Labels").value_counts("Labels").to_frame().reset_index()).reset_index() def generate_labels_link(labels,repos): links = [] for label,repo in zip(labels,repos): label = label.replace(" ", "+") links.append(f"https://github.com/argilla-io/{repo}/issues?q=is:open+is:issue+label:%22{label}%22") return links label_counts['Link'] = generate_labels_link(label_counts['Labels'],label_counts['Repository']) st.dataframe( label_counts[["Labels","Repository", "count","Link"]].head(10), hide_index=True, column_config={ "Labels": st.column_config.TextColumn("Labels"), "count": st.column_config.NumberColumn("Count"), "Link": st.column_config.LinkColumn("Link", display_text="πŸ”—") } ) ## Cloud of words: Issue titles with col2: st.subheader("Cloud of words ☁️") titles = " ".join(open_issues["Issue"]) titles = re.sub(r'\[.*?\]', '', titles) wordcloud = WordCloud(width=800, height=400, background_color="black").generate(titles) plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") st.pyplot(plt, use_container_width=True) # # Community engagement st.header("Community engagement") # ## Dataframe: Latest issues open by the community # ## Dataframe: issues sorted by number of comments st.subheader("Top engaging issues πŸ’¬") engagement_df = open_issues[["Issue","Repository","Reactions","Comments","URL"]].sort_values(by=["Reactions", "Comments"], ascending=False).head(10) st.dataframe( engagement_df, hide_index=True, # use_container_width=True, column_config={ "Issue": st.column_config.TextColumn("Issue", width="large"), "Reactions": st.column_config.NumberColumn("Reactions", format="%d πŸ‘", width="small"), "Comments": st.column_config.NumberColumn("Comments", format="%d πŸ’¬", width="small"), "URL": st.column_config.LinkColumn("πŸ”—", display_text="πŸ”—", width="small") } ) # ## Cloud of words: Comments?? # ## Dataframe: Contributor leaderboard. # # Issue dependencies # st.header("Issue dependencies") # ## Map: dependencies between issues. Network of issue mentions.x status.update(label="Checking for updated data...", state="running") updated_data = fetch_data() if df.equals(updated_data): status.update(label="Data is up to date!", state="complete") else: save_data(updated_data) status.update(label="Refresh for updated data!", state="complete")