File size: 2,082 Bytes
1d7e221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import re
import gradio as gr
from dataclasses import dataclass
from prettytable import PrettyTable
from pytorch_ie import AnnotationList, BinaryRelation, Span, LabeledSpan, Pipeline, TextDocument, annotation_field
from pytorch_ie.models import TransformerSpanClassificationModel, TransformerTextClassificationModel
from pytorch_ie.taskmodules import TransformerSpanClassificationTaskModule, TransformerRETextClassificationTaskModule
from typing import List
@dataclass
class ExampleDocument(TextDocument):
entities: AnnotationList[LabeledSpan] = annotation_field(target="text")
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities")
model_name_or_path = "pie/example-ner-spanclf-conll03"
ner_taskmodule = TransformerSpanClassificationTaskModule.from_pretrained(model_name_or_path)
ner_model = TransformerSpanClassificationModel.from_pretrained(model_name_or_path)
ner_pipeline = Pipeline(model=ner_model, taskmodule=ner_taskmodule, device=-1, num_workers=0)
model_name_or_path = "pie/example-re-textclf-tacred"
re_taskmodule = TransformerRETextClassificationTaskModule.from_pretrained(model_name_or_path)
re_model = TransformerTextClassificationModel.from_pretrained(model_name_or_path)
re_pipeline = Pipeline(model=re_model, taskmodule=re_taskmodule, device=-1, num_workers=0)
def predict(text):
document = ExampleDocument(text)
ner_pipeline(document, predict_field="entities")
for entity in document.entities.predictions:
document.entities.append(entity)
re_pipeline(document, predict_field="relations")
t = PrettyTable()
t.field_names = ["head", "tail", "relation"]
t.align = "l"
for relation in document.relations.predictions:
t.add_row([str(relation.head), str(relation.tail), relation.label])
html = t.get_html_string(format=True)
html = (
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
+ html
+ "</div>"
)
return html
iface = gr.Interface(
fn=predict,
inputs="textbox",
outputs="html",
)
iface.launch() |