Spaces:
Build error
Build error
File size: 6,660 Bytes
66a6dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import torch
import torchaudio
import numpy as np
def gain(xs, min_dB=-12, max_dB=12):
gain_dB = (torch.rand(1) * (max_dB - min_dB)) + min_dB
gain_ln = 10 ** (gain_dB / 20)
for idx, x in enumerate(xs):
xs[idx] = x * gain_ln
return xs
def peaking_filter(xs, sr=44100, frequency=1000, width_q=0.707, gain_db=12):
# gain_db = ((torch.rand(1) * 6) + 6).numpy().squeeze()
# width_q = (torch.rand(1) * 4).numpy().squeeze()
# frequency = ((torch.rand(1) * 9960) + 40).numpy().squeeze()
# if torch.rand(1) > 0.5:
# gain_db = -gain_db
effects = [["equalizer", f"{frequency}", f"{width_q}", f"{gain_db}"]]
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x, sr, effects, channels_first=True
)
xs[idx] = y
return xs
def pitch_shift(xs, min_shift=-200, max_shift=200, sr=44100):
shift = min_shift + (torch.rand(1)).numpy().squeeze() * (max_shift - min_shift)
effects = [["pitch", f"{shift}"]]
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x, sr, effects, channels_first=True
)
xs[idx] = y
return xs
def time_stretch(xs, min_stretch=0.8, max_stretch=1.2, sr=44100):
stretch = min_stretch + (torch.rand(1)).numpy().squeeze() * (
max_stretch - min_stretch
)
effects = [["tempo", f"{stretch}"]]
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x, sr, effects, channels_first=True
)
xs[idx] = y
return xs
def frequency_corruption(xs, sr=44100):
effects = []
# apply a random number of peaking bands from 0 to 4s
bands = [[200, 2000], [800, 4000], [2000, 8000], [4000, int((sr // 2) * 0.9)]]
total_gain_db = 0.0
for band in bands:
if torch.rand(1).sum() > 0.2:
frequency = (torch.randint(band[0], band[1], [1])).numpy().squeeze()
width_q = ((torch.rand(1) * 10) + 0.1).numpy().squeeze()
gain_db = ((torch.rand(1) * 48)).numpy().squeeze()
if torch.rand(1).sum() > 0.5:
gain_db = -gain_db
total_gain_db += gain_db
if np.abs(total_gain_db) >= 24:
continue
cmd = ["equalizer", f"{frequency}", f"{width_q}", f"{gain_db}"]
effects.append(cmd)
# low shelf (bass)
if torch.rand(1).sum() > 0.2:
gain_db = ((torch.rand(1) * 24)).numpy().squeeze()
frequency = (torch.randint(20, 200, [1])).numpy().squeeze()
if torch.rand(1).sum() > 0.5:
gain_db = -gain_db
effects.append(["bass", f"{gain_db}", f"{frequency}"])
# high shelf (treble)
if torch.rand(1).sum() > 0.2:
gain_db = ((torch.rand(1) * 24)).numpy().squeeze()
frequency = (torch.randint(4000, int((sr // 2) * 0.9), [1])).numpy().squeeze()
if torch.rand(1).sum() > 0.5:
gain_db = -gain_db
effects.append(["treble", f"{gain_db}", f"{frequency}"])
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x.view(1, -1) * 10 ** (-48 / 20), sr, effects, channels_first=True
)
# apply gain back
y *= 10 ** (48 / 20)
xs[idx] = y
return xs
def dynamic_range_corruption(xs, sr=44100):
"""Apply an expander."""
attack = (torch.rand([1]).numpy()[0] * 0.05) + 0.001
release = (torch.rand([1]).numpy()[0] * 0.2) + attack
knee = (torch.rand([1]).numpy()[0] * 12) + 0.0
# design the compressor transfer function
start = -100.0
threshold = -(
(torch.rand([1]).numpy()[0] * 20) + 10
) # threshold from -30 to -10 dB
ratio = (torch.rand([1]).numpy()[0] * 4.0) + 1 # ratio from 1:1 to 5:1
# compute the transfer curve
point = -((-threshold / -ratio) + (-start / ratio) + -threshold)
# apply some makeup gain
makeup = torch.rand([1]).numpy()[0] * 6
effects = [
[
"compand",
f"{attack},{release}",
f"{knee}:{point},{start},{threshold},{threshold}",
f"{makeup}",
f"{start}",
]
]
for idx, x in enumerate(xs):
# if the input is clipping normalize it
if x.abs().max() >= 1.0:
x /= x.abs().max()
gain_db = -((torch.rand(1) * 24)).numpy().squeeze()
x *= 10 ** (gain_db / 20.0)
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x.view(1, -1), sr, effects, channels_first=True
)
xs[idx] = y
return xs
def dynamic_range_compression(xs, sr=44100):
"""Apply a compressor."""
attack = (torch.rand([1]).numpy()[0] * 0.05) + 0.0005
release = (torch.rand([1]).numpy()[0] * 0.2) + attack
knee = (torch.rand([1]).numpy()[0] * 12) + 0.0
# design the compressor transfer function
start = -100.0
threshold = -((torch.rand([1]).numpy()[0] * 52) + 12)
# threshold from -64 to -12 dB
ratio = (torch.rand([1]).numpy()[0] * 10.0) + 1 # ratio from 1:1 to 10:1
# compute the transfer curve
point = threshold * (1 - (1 / ratio))
# apply some makeup gain
makeup = torch.rand([1]).numpy()[0] * 6
effects = [
[
"compand",
f"{attack},{release}",
f"{knee}:{start},{threshold},{threshold},0,{point}",
f"{makeup}",
f"{start}",
f"{attack}",
]
]
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x.view(1, -1), sr, effects, channels_first=True
)
xs[idx] = y
return xs
def lowpass_filter(xs, sr=44100, frequency=4000):
effects = [["lowpass", f"{frequency}"]]
for idx, x in enumerate(xs):
y, sr = torchaudio.sox_effects.apply_effects_tensor(
x, sr, effects, channels_first=True
)
xs[idx] = y
return xs
def apply(xs, sr, augmentations):
# iterate over augmentation dict
for aug, params in augmentations.items():
if aug == "gain":
xs = gain(xs, **params)
elif aug == "peak":
xs = peaking_filter(xs, **params)
elif aug == "lowpass":
xs = lowpass_filter(xs, **params)
elif aug == "pitch":
xs = pitch_shift(xs, **params)
elif aug == "tempo":
xs = time_stretch(xs, **params)
elif aug == "freq_corrupt":
xs = frequency_corruption(xs, **params)
else:
raise RuntimeError("Invalid augmentation: {aug}")
return xs
|