File size: 11,228 Bytes
66a6dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import julius
import torchopenl3
import torchmetrics
import pytorch_lightning as pl
from typing import Tuple, List, Dict
from argparse import ArgumentParser

from deepafx_st.probes.cdpam_encoder import CDPAMEncoder
from deepafx_st.probes.random_mel import RandomMelProjection

import deepafx_st.utils as utils
from deepafx_st.utils import DSPMode
from deepafx_st.system import System
from deepafx_st.data.style import StyleDataset


class ProbeSystem(pl.LightningModule):
    def __init__(
        self,
        audio_dir=None,
        num_classes=5,
        task="style",
        encoder_type="deepafx_st_autodiff",
        deepafx_st_autodiff_ckpt=None,
        deepafx_st_spsa_ckpt=None,
        deepafx_st_proxy0_ckpt=None,
        probe_type="linear",
        batch_size=32,
        lr=3e-4,
        lr_patience=20,
        patience=10,
        preload=False,
        sample_rate=24000,
        shuffle=True,
        num_workers=16,
        **kwargs,
    ):
        super().__init__()
        self.save_hyperparameters()

        if "deepafx_st" in self.hparams.encoder_type:

            if "autodiff" in self.hparams.encoder_type:
                self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_autodiff_ckpt
            elif "spsa" in self.hparams.encoder_type:
                self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_spsa_ckpt
            elif "proxy0" in self.hparams.encoder_type:
                self.hparams.deepafx_st_ckpt = self.hparams.deepafx_st_proxy0_ckpt

            else:
                raise RuntimeError(f"Invalid encoder_type: {self.hparams.encoder_type}")

            if self.hparams.deepafx_st_ckpt is None:
                raise RuntimeError(
                    f"Must supply {self.hparams.encoder_type}_ckpt checkpoint."
                )
            use_dsp = DSPMode.NONE
            system = System.load_from_checkpoint(
                self.hparams.deepafx_st_ckpt,
                use_dsp=use_dsp,
                batch_size=self.hparams.batch_size,
                spsa_parallel=False,
                proxy_ckpts=[],
                strict=False,
            )
            system.eval()
            self.encoder = system.encoder
            self.hparams.embed_dim = self.encoder.embed_dim

            # freeze weights
            for name, param in self.encoder.named_parameters():
                param.requires_grad = False

        elif self.hparams.encoder_type == "openl3":
            self.encoder = torchopenl3.models.load_audio_embedding_model(
                input_repr=self.hparams.openl3_input_repr,
                embedding_size=self.hparams.openl3_embedding_size,
                content_type=self.hparams.openl3_content_type,
            )
            self.hparams.embed_dim = 6144
        elif self.hparams.encoder_type == "random_mel":
            self.encoder = RandomMelProjection(
                self.hparams.sample_rate,
                self.hparams.random_mel_embedding_size,
                self.hparams.random_mel_n_mels,
                self.hparams.random_mel_n_fft,
                self.hparams.random_mel_hop_size,
            )
            self.hparams.embed_dim = self.hparams.random_mel_embedding_size
        elif self.hparams.encoder_type == "cdpam":
            self.encoder = CDPAMEncoder(self.hparams.cdpam_ckpt)
            self.encoder.eval()
            self.hparams.embed_dim = self.encoder.embed_dim
        else:
            raise ValueError(f"Invalid encoder_type: {self.hparams.encoder_type}")

        if self.hparams.probe_type == "linear":
            if self.hparams.task == "style":
                self.probe = torch.nn.Sequential(
                    torch.nn.Linear(self.hparams.embed_dim, self.hparams.num_classes),
                    # torch.nn.Softmax(-1),
                )
        elif self.hparams.probe_type == "mlp":
            if self.hparams.task == "style":
                self.probe = torch.nn.Sequential(
                    torch.nn.Linear(self.hparams.embed_dim, 512),
                    torch.nn.ReLU(),
                    torch.nn.Linear(512, 512),
                    torch.nn.ReLU(),
                    torch.nn.Linear(512, self.hparams.num_classes),
                )
        self.accuracy = torchmetrics.Accuracy()
        self.f1_score = torchmetrics.F1Score(self.hparams.num_classes)

    def forward(self, x):
        bs, chs, samp = x.size()
        with torch.no_grad():
            if "deepafx_st" in self.hparams.encoder_type:
                x /= x.abs().max()
                x *= 10 ** (-12.0 / 20)  # with min 12 dBFS headroom
                e = self.encoder(x)
                norm = torch.norm(e, p=2, dim=-1, keepdim=True)
                e = e / norm
            elif self.hparams.encoder_type == "openl3":
                # x = julius.resample_frac(x, self.hparams.sample_rate, 48000)
                e, ts = torchopenl3.get_audio_embedding(
                    x,
                    48000,
                    model=self.encoder,
                    input_repr="mel128",
                    content_type="music",
                )
                e = e.permute(0, 2, 1)
                e = e.mean(dim=-1)
                # normalize by L2 norm
                norm = torch.norm(e, p=2, dim=-1, keepdim=True)
                e = e / norm
            elif self.hparams.encoder_type == "random_mel":
                e = self.encoder(x)
                norm = torch.norm(e, p=2, dim=-1, keepdim=True)
                e = e / norm
            elif self.hparams.encoder_type == "cdpam":
                # x = julius.resample_frac(x, self.hparams.sample_rate, 22050)
                x = torch.round(x * 32768)
                e = self.encoder(x)

        return self.probe(e)

    def common_step(
        self,
        batch: Tuple,
        batch_idx: int,
        optimizer_idx: int = 0,
        train: bool = True,
    ):
        loss = 0
        x, y = batch

        y_hat = self(x)

        # compute CE
        if self.hparams.task == "style":
            loss = torch.nn.functional.cross_entropy(y_hat, y)

        if not train:
            # store audio data
            data_dict = {"x": x.float().cpu()}
        else:
            data_dict = {}

        self.log(
            "train_loss" if train else "val_loss",
            loss,
            on_step=True,
            on_epoch=True,
            prog_bar=False,
            logger=True,
            sync_dist=True,
        )

        if not train and self.hparams.task == "style":
            self.log("val_acc_step", self.accuracy(y_hat, y))
            self.log("val_f1_step", self.f1_score(y_hat, y))

        return loss, data_dict

    def training_step(self, batch, batch_idx, optimizer_idx=0):
        loss, _ = self.common_step(batch, batch_idx)
        return loss

    def validation_step(self, batch, batch_idx):
        loss, data_dict = self.common_step(batch, batch_idx, train=False)

        if batch_idx == 0:
            return data_dict

    def validation_epoch_end(self, outputs) -> None:
        if self.hparams.task == "style":
            self.log("val_acc_epoch", self.accuracy.compute())
            self.log("val_f1_epoch", self.f1_score.compute())

        return super().validation_epoch_end(outputs)

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            self.probe.parameters(),
            lr=self.hparams.lr,
            betas=(0.9, 0.999),
        )

        ms1 = int(self.hparams.max_epochs * 0.8)
        ms2 = int(self.hparams.max_epochs * 0.95)
        print(
            "Learning rate schedule:",
            f"0 {self.hparams.lr:0.2e} -> ",
            f"{ms1} {self.hparams.lr*0.1:0.2e} -> ",
            f"{ms2} {self.hparams.lr*0.01:0.2e}",
        )
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer,
            milestones=[ms1, ms2],
            gamma=0.1,
        )

        return [optimizer], {"scheduler": scheduler, "monitor": "val_loss"}

    def train_dataloader(self):

        if self.hparams.task == "style":
            train_dataset = StyleDataset(
                self.hparams.audio_dir,
                "train",
                sample_rate=self.hparams.encoder_sample_rate,
            )

        g = torch.Generator()
        g.manual_seed(0)

        return torch.utils.data.DataLoader(
            train_dataset,
            num_workers=self.hparams.num_workers,
            batch_size=self.hparams.batch_size,
            shuffle=True,
            worker_init_fn=utils.seed_worker,
            generator=g,
            pin_memory=True,
        )

    def val_dataloader(self):

        if self.hparams.task == "style":
            val_dataset = StyleDataset(
                self.hparams.audio_dir,
                subset="val",
                sample_rate=self.hparams.encoder_sample_rate,
            )

        g = torch.Generator()
        g.manual_seed(0)

        return torch.utils.data.DataLoader(
            val_dataset,
            num_workers=self.hparams.num_workers,
            batch_size=self.hparams.batch_size,
            worker_init_fn=utils.seed_worker,
            generator=g,
            pin_memory=True,
        )

    # add any model hyperparameters here
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        # --- Model  ---
        parser.add_argument("--encoder_type", type=str, default="deeapfx2")
        parser.add_argument("--probe_type", type=str, default="linear")
        parser.add_argument("--task", type=str, default="style")
        parser.add_argument("--encoder_sample_rate", type=int, default=24000)
        # --- deeapfx2  ---
        parser.add_argument("--deepafx_st_autodiff_ckpt", type=str)
        parser.add_argument("--deepafx_st_spsa_ckpt", type=str)
        parser.add_argument("--deepafx_st_proxy0_ckpt", type=str)

        # --- cdpam  ---
        parser.add_argument("--cdpam_ckpt", type=str)
        # --- openl3  ---
        parser.add_argument("--openl3_input_repr", type=str, default="mel128")
        parser.add_argument("--openl3_content_type", type=str, default="env")
        parser.add_argument("--openl3_embedding_size", type=int, default=6144)
        # --- random_mel  ---
        parser.add_argument("--random_mel_embedding_size", type=str, default=4096)
        parser.add_argument("--random_mel_n_fft", type=str, default=4096)
        parser.add_argument("--random_mel_hop_size", type=str, default=1024)
        parser.add_argument("--random_mel_n_mels", type=str, default=128)
        # --- Training  ---
        parser.add_argument("--audio_dir", type=str)
        parser.add_argument("--num_classes", type=int, default=5)
        parser.add_argument("--batch_size", type=int, default=32)
        parser.add_argument("--lr", type=float, default=3e-4)
        parser.add_argument("--lr_patience", type=int, default=20)
        parser.add_argument("--patience", type=int, default=10)
        parser.add_argument("--preload", action="store_true")
        parser.add_argument("--sample_rate", type=int, default=24000)
        parser.add_argument("--num_workers", type=int, default=8)

        return parser