File size: 6,275 Bytes
66a6dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import glob
import torch
import warnings
import torchaudio
import pyloudnorm as pyln


class AudioFile(object):
    def __init__(self, filepath, preload=False, half=False, target_loudness=None):
        """Base class for audio files to handle metadata and loading.

        Args:
            filepath (str): Path to audio file to load from disk.
            preload (bool, optional): If set, load audio data into RAM. Default: False
            half (bool, optional): If set, store audio data as float16 to save space. Default: False
            target_loudness (float, optional): Loudness normalize to dB LUFS value. Default:
        """
        super().__init__()

        self.filepath = filepath
        self.half = half
        self.target_loudness = target_loudness
        self.loaded = False

        if preload:
            self.load()
            num_frames = self.audio.shape[-1]
            num_channels = self.audio.shape[0]
        else:
            metadata = torchaudio.info(filepath)
            audio = None
            self.sample_rate = metadata.sample_rate
            num_frames = metadata.num_frames
            num_channels = metadata.num_channels

        self.num_frames = num_frames
        self.num_channels = num_channels

    def load(self):
        audio, sr = torchaudio.load(self.filepath, normalize=True)
        self.audio = audio
        self.sample_rate = sr

        if self.target_loudness is not None:
            self.loudness_normalize()

        if self.half:
            self.audio = audio.half()

        self.loaded = True

    def loudness_normalize(self):
        meter = pyln.Meter(self.sample_rate)

        # conver mono to stereo
        if self.audio.shape[0] == 1:
            tmp_audio = self.audio.repeat(2, 1)
        else:
            tmp_audio = self.audio

        # measure integrated loudness
        input_loudness = meter.integrated_loudness(tmp_audio.numpy().T)

        # compute and apply gain
        gain_dB = self.target_loudness - input_loudness
        gain_ln = 10 ** (gain_dB / 20.0)
        self.audio *= gain_ln

        # check for potentially clipped samples
        if self.audio.abs().max() >= 1.0:
            warnings.warn("Possible clipped samples in output.")


class AudioFileDataset(torch.utils.data.Dataset):
    """Base class for audio file datasets loaded from disk.

    Datasets can be either paired or unpaired. A paired dataset requires passing the `target_dir` path.

    Args:
        input_dir (List[str]): List of paths to the directories containing input audio files.
        target_dir (List[str], optional): List of paths to the directories containing correponding audio files. Default: []
        subset (str, optional): Dataset subset. One of ["train", "val", "test"]. Default: "train"
        length (int, optional): Number of samples to load for each example. Default: 65536
        normalize (bool, optional): Normalize audio amplitiude to -1 to 1. Default: True
        train_frac (float, optional): Fraction of the files to use for training subset. Default: 0.8
        val_frac (float, optional): Fraction of the files to use for validation subset. Default: 0.1
        preload (bool, optional): Read audio files into RAM at the start of training. Default: False
        num_examples_per_epoch (int, optional): Define an epoch as certain number of audio examples. Default: 10000
        ext (str, optional): Expected audio file extension. Default: "wav"
    """

    def __init__(
        self,
        input_dirs,
        target_dirs=[],
        subset="train",
        length=65536,
        normalize=True,
        train_per=0.8,
        val_per=0.1,
        preload=False,
        num_examples_per_epoch=10000,
        ext="wav",
    ):
        super().__init__()
        self.input_dirs = input_dirs
        self.target_dirs = target_dirs
        self.subset = subset
        self.length = length
        self.normalize = normalize
        self.train_per = train_per
        self.val_per = val_per
        self.preload = preload
        self.num_examples_per_epoch = num_examples_per_epoch
        self.ext = ext

        self.input_filepaths = []
        for input_dir in input_dirs:
            search_path = os.path.join(input_dir, f"*.{ext}")
            self.input_filepaths += glob.glob(search_path)
        self.input_filepaths = sorted(self.input_filepaths)

        self.target_filepaths = []
        for target_dir in target_dirs:
            search_path = os.path.join(target_dir, f"*.{ext}")
            self.target_filepaths += glob.glob(search_path)
        self.target_filepaths = sorted(self.target_filepaths)

        # both sets must have same number of files in paired dataset
        assert len(self.target_filepaths) == len(self.input_filepaths)

        # get details about audio files
        self.input_files = []
        for input_filepath in self.input_filepaths:
            self.input_files.append(
                AudioFile(input_filepath, preload=preload, normalize=normalize)
            )

        self.target_files = []
        if target_dir is not None:
            for target_filepath in self.target_filepaths:
                self.target_files.append(
                    AudioFile(target_filepath, preload=preload, normalize=normalize)
                )

    def __len__(self):
        return self.num_examples_per_epoch

    def __getitem__(self, idx):
        """ """

        # index the current audio file
        input_file = self.input_files[idx]

        # load the audio data if needed
        if not input_file.loaded:
            input_file.load()

        # get a random patch of size `self.length`
        start_idx = int(torch.rand() * (input_file.num_frames - self.length))
        stop_idx = start_idx + self.length
        input_audio = input_file.audio[:, start_idx:stop_idx]

        # if there is a target file, get it (and load)
        if len(self.target_files) > 0:
            target_file = self.target_files[idx]

            if not target_file.loaded:
                target_file.load()

            # use the same cropping indices
            target_audio = target_file.audio[:, start_idx:stop_idx]

            return input_audio, target_audio
        else:
            return input_audio