Spaces:
Build error
Build error
File size: 10,019 Bytes
66a6dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from re import X
import torch
import auraloss
import pytorch_lightning as pl
from typing import Tuple, List, Dict
from argparse import ArgumentParser
import deepafx_st.utils as utils
from deepafx_st.data.proxy import DSPProxyDataset
from deepafx_st.processors.proxy.tcn import ConditionalTCN
from deepafx_st.processors.spsa.channel import SPSAChannel
from deepafx_st.processors.dsp.peq import ParametricEQ
from deepafx_st.processors.dsp.compressor import Compressor
class ProxySystem(pl.LightningModule):
def __init__(
self,
causal=True,
nblocks=4,
dilation_growth=8,
kernel_size=13,
channel_width=64,
input_dir=None,
processor="channel",
batch_size=32,
lr=3e-4,
lr_patience=20,
patience=10,
preload=False,
sample_rate=24000,
shuffle=True,
train_length=65536,
train_examples_per_epoch=10000,
val_length=131072,
val_examples_per_epoch=1000,
num_workers=16,
output_gain=False,
**kwargs,
):
super().__init__()
self.save_hyperparameters()
#print(f"Proxy Processor: {processor} @ fs={sample_rate} Hz")
# construct both the true DSP...
if self.hparams.processor == "peq":
self.processor = ParametricEQ(self.hparams.sample_rate)
elif self.hparams.processor == "comp":
self.processor = Compressor(self.hparams.sample_rate)
elif self.hparams.processor == "channel":
self.processor = SPSAChannel(self.hparams.sample_rate)
# and the neural network proxy
self.proxy = ConditionalTCN(
self.hparams.sample_rate,
num_control_params=self.processor.num_control_params,
causal=self.hparams.causal,
nblocks=self.hparams.nblocks,
channel_width=self.hparams.channel_width,
kernel_size=self.hparams.kernel_size,
dilation_growth=self.hparams.dilation_growth,
)
self.receptive_field = self.proxy.compute_receptive_field()
self.recon_losses = {}
self.recon_loss_weights = {}
self.recon_losses["mrstft"] = auraloss.freq.MultiResolutionSTFTLoss(
fft_sizes=[32, 128, 512, 2048, 8192, 32768],
hop_sizes=[16, 64, 256, 1024, 4096, 16384],
win_lengths=[32, 128, 512, 2048, 8192, 32768],
w_sc=0.0,
w_phs=0.0,
w_lin_mag=1.0,
w_log_mag=1.0,
)
self.recon_loss_weights["mrstft"] = 1.0
self.recon_losses["l1"] = torch.nn.L1Loss()
self.recon_loss_weights["l1"] = 100.0
def forward(self, x, p, use_dsp=False, sample_rate=24000, **kwargs):
"""Use the pre-trained neural network proxy effect."""
bs, chs, samp = x.size()
if not use_dsp:
y = self.proxy(x, p)
# manually apply the makeup gain parameter
if self.hparams.output_gain and not self.hparams.processor == "peq":
gain_db = (p[..., -1] * 96) - 48
gain_ln = 10 ** (gain_db / 20.0)
y *= gain_ln.view(bs, chs, 1)
else:
with torch.no_grad():
bs, chs, s = x.shape
if self.hparams.output_gain and not self.hparams.processor == "peq":
# override makeup gain
gain_db = (p[..., -1] * 96) - 48
gain_ln = 10 ** (gain_db / 20.0)
p[..., -1] = 0.5
if self.hparams.processor == "channel":
y_temp = self.processor(x.cpu(), p.cpu())
y_temp = y_temp.view(bs, chs, s).type_as(x)
else:
y_temp = self.processor(
x.cpu().numpy(),
p.cpu().numpy(),
sample_rate,
)
y_temp = torch.tensor(y_temp).view(bs, chs, s).type_as(x)
y = y_temp.type_as(x).view(bs, 1, -1)
if self.hparams.output_gain and not self.hparams.processor == "peq":
y *= gain_ln.view(bs, chs, 1)
return y
def common_step(
self,
batch: Tuple,
batch_idx: int,
optimizer_idx: int = 0,
train: bool = True,
):
loss = 0
x, y, p = batch
y_hat = self(x, p)
# compute loss
for loss_idx, (loss_name, loss_fn) in enumerate(self.recon_losses.items()):
tmp_loss = loss_fn(y_hat.float(), y.float())
loss += self.recon_loss_weights[loss_name] * tmp_loss
self.log(
f"train_loss/{loss_name}" if train else f"val_loss/{loss_name}",
tmp_loss,
on_step=True,
on_epoch=True,
prog_bar=False,
logger=True,
sync_dist=True,
)
if not train:
# store audio data
data_dict = {
"x": x.float().cpu(),
"y": y.float().cpu(),
"p": p.float().cpu(),
"y_hat": y_hat.float().cpu(),
}
else:
data_dict = {}
self.log(
"train_loss" if train else "val_loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=False,
logger=True,
sync_dist=True,
)
return loss, data_dict
def training_step(self, batch, batch_idx, optimizer_idx=0):
loss, _ = self.common_step(batch, batch_idx)
return loss
def validation_step(self, batch, batch_idx):
loss, data_dict = self.common_step(batch, batch_idx, train=False)
if batch_idx == 0:
return data_dict
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.proxy.parameters(),
lr=self.hparams.lr,
betas=(0.9, 0.999),
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
patience=self.hparams.lr_patience,
verbose=True,
)
return [optimizer], {"scheduler": scheduler, "monitor": "val_loss"}
def train_dataloader(self):
train_dataset = DSPProxyDataset(
self.hparams.input_dir,
self.processor,
self.hparams.processor, # name
subset="train",
length=self.hparams.train_length,
num_examples_per_epoch=self.hparams.train_examples_per_epoch,
half=True if self.hparams.precision == 16 else False,
buffer_size_gb=self.hparams.buffer_size_gb,
buffer_reload_rate=self.hparams.buffer_reload_rate,
)
g = torch.Generator()
g.manual_seed(0)
return torch.utils.data.DataLoader(
train_dataset,
num_workers=self.hparams.num_workers,
batch_size=self.hparams.batch_size,
worker_init_fn=utils.seed_worker,
generator=g,
pin_memory=True,
)
def val_dataloader(self):
val_dataset = DSPProxyDataset(
self.hparams.input_dir,
self.processor,
self.hparams.processor, # name
subset="val",
length=self.hparams.val_length,
num_examples_per_epoch=self.hparams.val_examples_per_epoch,
half=True if self.hparams.precision == 16 else False,
buffer_size_gb=self.hparams.buffer_size_gb,
buffer_reload_rate=self.hparams.buffer_reload_rate,
)
g = torch.Generator()
g.manual_seed(0)
return torch.utils.data.DataLoader(
val_dataset,
num_workers=self.hparams.num_workers,
batch_size=self.hparams.batch_size,
worker_init_fn=utils.seed_worker,
generator=g,
pin_memory=True,
)
@staticmethod
def count_control_params(plugin_config):
num_control_params = 0
for plugin in plugin_config["plugins"]:
for port in plugin["ports"]:
if port["optim"]:
num_control_params += 1
return num_control_params
# add any model hyperparameters here
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
# --- Model ---
parser.add_argument("--causal", action="store_true")
parser.add_argument("--output_gain", action="store_true")
parser.add_argument("--dilation_growth", type=int, default=8)
parser.add_argument("--nblocks", type=int, default=4)
parser.add_argument("--kernel_size", type=int, default=13)
parser.add_argument("--channel_width", type=int, default=13)
# --- Training ---
parser.add_argument("--input_dir", type=str)
parser.add_argument("--processor", type=str)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--lr_patience", type=int, default=20)
parser.add_argument("--patience", type=int, default=10)
parser.add_argument("--preload", action="store_true")
parser.add_argument("--sample_rate", type=int, default=24000)
parser.add_argument("--shuffle", type=bool, default=True)
parser.add_argument("--train_length", type=int, default=65536)
parser.add_argument("--train_examples_per_epoch", type=int, default=10000)
parser.add_argument("--val_length", type=int, default=131072)
parser.add_argument("--val_examples_per_epoch", type=int, default=1000)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--buffer_reload_rate", type=int, default=1000)
parser.add_argument("--buffer_size_gb", type=float, default=1.0)
return parser
|