Spaces:
Build error
Build error
from re import X | |
import torch | |
import auraloss | |
import pytorch_lightning as pl | |
from typing import Tuple, List, Dict | |
from argparse import ArgumentParser | |
import deepafx_st.utils as utils | |
from deepafx_st.data.proxy import DSPProxyDataset | |
from deepafx_st.processors.proxy.tcn import ConditionalTCN | |
from deepafx_st.processors.spsa.channel import SPSAChannel | |
from deepafx_st.processors.dsp.peq import ParametricEQ | |
from deepafx_st.processors.dsp.compressor import Compressor | |
class ProxySystem(pl.LightningModule): | |
def __init__( | |
self, | |
causal=True, | |
nblocks=4, | |
dilation_growth=8, | |
kernel_size=13, | |
channel_width=64, | |
input_dir=None, | |
processor="channel", | |
batch_size=32, | |
lr=3e-4, | |
lr_patience=20, | |
patience=10, | |
preload=False, | |
sample_rate=24000, | |
shuffle=True, | |
train_length=65536, | |
train_examples_per_epoch=10000, | |
val_length=131072, | |
val_examples_per_epoch=1000, | |
num_workers=16, | |
output_gain=False, | |
**kwargs, | |
): | |
super().__init__() | |
self.save_hyperparameters() | |
#print(f"Proxy Processor: {processor} @ fs={sample_rate} Hz") | |
# construct both the true DSP... | |
if self.hparams.processor == "peq": | |
self.processor = ParametricEQ(self.hparams.sample_rate) | |
elif self.hparams.processor == "comp": | |
self.processor = Compressor(self.hparams.sample_rate) | |
elif self.hparams.processor == "channel": | |
self.processor = SPSAChannel(self.hparams.sample_rate) | |
# and the neural network proxy | |
self.proxy = ConditionalTCN( | |
self.hparams.sample_rate, | |
num_control_params=self.processor.num_control_params, | |
causal=self.hparams.causal, | |
nblocks=self.hparams.nblocks, | |
channel_width=self.hparams.channel_width, | |
kernel_size=self.hparams.kernel_size, | |
dilation_growth=self.hparams.dilation_growth, | |
) | |
self.receptive_field = self.proxy.compute_receptive_field() | |
self.recon_losses = {} | |
self.recon_loss_weights = {} | |
self.recon_losses["mrstft"] = auraloss.freq.MultiResolutionSTFTLoss( | |
fft_sizes=[32, 128, 512, 2048, 8192, 32768], | |
hop_sizes=[16, 64, 256, 1024, 4096, 16384], | |
win_lengths=[32, 128, 512, 2048, 8192, 32768], | |
w_sc=0.0, | |
w_phs=0.0, | |
w_lin_mag=1.0, | |
w_log_mag=1.0, | |
) | |
self.recon_loss_weights["mrstft"] = 1.0 | |
self.recon_losses["l1"] = torch.nn.L1Loss() | |
self.recon_loss_weights["l1"] = 100.0 | |
def forward(self, x, p, use_dsp=False, sample_rate=24000, **kwargs): | |
"""Use the pre-trained neural network proxy effect.""" | |
bs, chs, samp = x.size() | |
if not use_dsp: | |
y = self.proxy(x, p) | |
# manually apply the makeup gain parameter | |
if self.hparams.output_gain and not self.hparams.processor == "peq": | |
gain_db = (p[..., -1] * 96) - 48 | |
gain_ln = 10 ** (gain_db / 20.0) | |
y *= gain_ln.view(bs, chs, 1) | |
else: | |
with torch.no_grad(): | |
bs, chs, s = x.shape | |
if self.hparams.output_gain and not self.hparams.processor == "peq": | |
# override makeup gain | |
gain_db = (p[..., -1] * 96) - 48 | |
gain_ln = 10 ** (gain_db / 20.0) | |
p[..., -1] = 0.5 | |
if self.hparams.processor == "channel": | |
y_temp = self.processor(x.cpu(), p.cpu()) | |
y_temp = y_temp.view(bs, chs, s).type_as(x) | |
else: | |
y_temp = self.processor( | |
x.cpu().numpy(), | |
p.cpu().numpy(), | |
sample_rate, | |
) | |
y_temp = torch.tensor(y_temp).view(bs, chs, s).type_as(x) | |
y = y_temp.type_as(x).view(bs, 1, -1) | |
if self.hparams.output_gain and not self.hparams.processor == "peq": | |
y *= gain_ln.view(bs, chs, 1) | |
return y | |
def common_step( | |
self, | |
batch: Tuple, | |
batch_idx: int, | |
optimizer_idx: int = 0, | |
train: bool = True, | |
): | |
loss = 0 | |
x, y, p = batch | |
y_hat = self(x, p) | |
# compute loss | |
for loss_idx, (loss_name, loss_fn) in enumerate(self.recon_losses.items()): | |
tmp_loss = loss_fn(y_hat.float(), y.float()) | |
loss += self.recon_loss_weights[loss_name] * tmp_loss | |
self.log( | |
f"train_loss/{loss_name}" if train else f"val_loss/{loss_name}", | |
tmp_loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
if not train: | |
# store audio data | |
data_dict = { | |
"x": x.float().cpu(), | |
"y": y.float().cpu(), | |
"p": p.float().cpu(), | |
"y_hat": y_hat.float().cpu(), | |
} | |
else: | |
data_dict = {} | |
self.log( | |
"train_loss" if train else "val_loss", | |
loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
return loss, data_dict | |
def training_step(self, batch, batch_idx, optimizer_idx=0): | |
loss, _ = self.common_step(batch, batch_idx) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
loss, data_dict = self.common_step(batch, batch_idx, train=False) | |
if batch_idx == 0: | |
return data_dict | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam( | |
self.proxy.parameters(), | |
lr=self.hparams.lr, | |
betas=(0.9, 0.999), | |
) | |
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
optimizer, | |
patience=self.hparams.lr_patience, | |
verbose=True, | |
) | |
return [optimizer], {"scheduler": scheduler, "monitor": "val_loss"} | |
def train_dataloader(self): | |
train_dataset = DSPProxyDataset( | |
self.hparams.input_dir, | |
self.processor, | |
self.hparams.processor, # name | |
subset="train", | |
length=self.hparams.train_length, | |
num_examples_per_epoch=self.hparams.train_examples_per_epoch, | |
half=True if self.hparams.precision == 16 else False, | |
buffer_size_gb=self.hparams.buffer_size_gb, | |
buffer_reload_rate=self.hparams.buffer_reload_rate, | |
) | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
train_dataset, | |
num_workers=self.hparams.num_workers, | |
batch_size=self.hparams.batch_size, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
) | |
def val_dataloader(self): | |
val_dataset = DSPProxyDataset( | |
self.hparams.input_dir, | |
self.processor, | |
self.hparams.processor, # name | |
subset="val", | |
length=self.hparams.val_length, | |
num_examples_per_epoch=self.hparams.val_examples_per_epoch, | |
half=True if self.hparams.precision == 16 else False, | |
buffer_size_gb=self.hparams.buffer_size_gb, | |
buffer_reload_rate=self.hparams.buffer_reload_rate, | |
) | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
val_dataset, | |
num_workers=self.hparams.num_workers, | |
batch_size=self.hparams.batch_size, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
) | |
def count_control_params(plugin_config): | |
num_control_params = 0 | |
for plugin in plugin_config["plugins"]: | |
for port in plugin["ports"]: | |
if port["optim"]: | |
num_control_params += 1 | |
return num_control_params | |
# add any model hyperparameters here | |
def add_model_specific_args(parent_parser): | |
parser = ArgumentParser(parents=[parent_parser], add_help=False) | |
# --- Model --- | |
parser.add_argument("--causal", action="store_true") | |
parser.add_argument("--output_gain", action="store_true") | |
parser.add_argument("--dilation_growth", type=int, default=8) | |
parser.add_argument("--nblocks", type=int, default=4) | |
parser.add_argument("--kernel_size", type=int, default=13) | |
parser.add_argument("--channel_width", type=int, default=13) | |
# --- Training --- | |
parser.add_argument("--input_dir", type=str) | |
parser.add_argument("--processor", type=str) | |
parser.add_argument("--batch_size", type=int, default=32) | |
parser.add_argument("--lr", type=float, default=3e-4) | |
parser.add_argument("--lr_patience", type=int, default=20) | |
parser.add_argument("--patience", type=int, default=10) | |
parser.add_argument("--preload", action="store_true") | |
parser.add_argument("--sample_rate", type=int, default=24000) | |
parser.add_argument("--shuffle", type=bool, default=True) | |
parser.add_argument("--train_length", type=int, default=65536) | |
parser.add_argument("--train_examples_per_epoch", type=int, default=10000) | |
parser.add_argument("--val_length", type=int, default=131072) | |
parser.add_argument("--val_examples_per_epoch", type=int, default=1000) | |
parser.add_argument("--num_workers", type=int, default=8) | |
parser.add_argument("--buffer_reload_rate", type=int, default=1000) | |
parser.add_argument("--buffer_size_gb", type=float, default=1.0) | |
return parser | |