Spaces:
Sleeping
Sleeping
from pathlib import Path | |
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from torch import nn | |
LABELS = Path(hf_hub_download('nateraw/quickdraw', 'class_names.txt')).read_text().splitlines() | |
model = nn.Sequential( | |
nn.Conv2d(1, 32, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(32, 64, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Flatten(), | |
nn.Linear(1152, 256), | |
nn.ReLU(), | |
nn.Linear(256, len(LABELS)), | |
) | |
weights_file = hf_hub_download('nateraw/quickdraw', 'pytorch_model.bin') | |
state_dict = torch.load(weights_file, map_location='cpu') | |
model.load_state_dict(state_dict, strict=False) | |
model.eval() | |
def predict(im): | |
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.0 | |
with torch.no_grad(): | |
out = model(x) | |
probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilities, 5) | |
return {LABELS[i]: v.item() for i, v in zip(indices, values)} | |
interface = gr.Interface(predict, inputs='sketchpad', outputs='label', live=True) | |
if __name__ == '__main__': | |
interface.launch(debug=True) | |