File size: 5,230 Bytes
2a27594
 
 
 
 
 
 
 
 
 
4dec890
 
2a27594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684a116
2a27594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3c7b84
2a27594
 
 
 
 
 
 
 
 
 
 
 
 
 
1cdde98
2a27594
 
 
 
 
 
 
 
 
 
 
 
 
b3c7b84
2a27594
 
 
 
 
 
 
6306de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a27594
 
6306de6
 
2a27594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import subprocess
import tempfile
import time
from pathlib import Path

import cv2
import gradio as gr

from inferer import Inferer

pipeline = Inferer("nateraw/yolov6s", device='cuda')
print(f"GPU on? {'🟒' if pipeline.device.type != 'cpu' else 'πŸ”΄'}")

def fn_image(image, conf_thres, iou_thres):
    return pipeline(image, conf_thres, iou_thres)


def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
    start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
    end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

    suffix = Path(video_file).suffix

    clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
    subprocess.call(
        f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
    )

    # Reader of clip file
    cap = cv2.VideoCapture(clip_temp_file.name)

    # This is an intermediary temp file where we'll write the video to
    # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
    # with ffmpeg at the end of the function here.
    with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
        out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))

        num_frames = 0
        max_frames = duration * 30
        while cap.isOpened():
            try:
                ret, frame = cap.read()
                if not ret:
                    break
            except Exception as e:
                print(e)
                continue
            print("FRAME DTYPE", type(frame))
            out.write(pipeline(frame, conf_thres, iou_thres))
            num_frames += 1
            print("Processed {} frames".format(num_frames))
            if num_frames == max_frames:
                break

        out.release()

        # Aforementioned hackiness
        out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
        subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

    return out_file.name


image_interface = gr.Interface(
    fn=fn_image,
    inputs=[
        "image",
        gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
    ],
    outputs=gr.Image(type="file"),
    examples=[["example_1.jpg", 0.5, 0.5], ["example_2.jpg", 0.25, 0.45], ["example_3.jpg", 0.25, 0.45]],
    title="YOLOv6",
    description=(
        "Gradio demo for YOLOv6 for object detection on images. To use it, simply upload your image or click one of the"
        " examples to load them. Read more at the links below."
    ),
    article=(
        "<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
        " <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
        " badge'></center></div>"
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

video_interface = gr.Interface(
    fn=fn_video,
    inputs=[
        gr.Video(type="file"),
        gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
        gr.Slider(0, 10, value=0, label="Start Second", step=1),
        gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
    ],
    outputs=gr.Video(type="file", format="mp4"),
    examples=[
        ["example_1.mp4", 0.25, 0.45, 0, 2],
        ["example_2.mp4", 0.25, 0.45, 5, 3],
        ["example_3.mp4", 0.25, 0.45, 6, 3],
    ],
    title="YOLOv6",
    description=(
        "Gradio demo for YOLOv6 for object detection on videos. To use it, simply upload your video or click one of the"
        " examples to load them. Read more at the links below."
    ),
    article=(
        "<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
        " <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
        " badge'></center></div>"
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

webcam_interface = gr.Interface(
    fn_image,
    inputs=[
        gr.Image(source='webcam', streaming=True),
        gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
        gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
    ],
    outputs=gr.Image(type="file"),
    live=True,
    title="YOLOv6",
    description=(
        "Gradio demo for YOLOv6 for object detection on real time webcam. To use it, simply allow the browser to access"
        " your webcam. Read more at the links below."
    ),
    article=(
        "<div style='text-align: center;'><a href='https://github.com/meituan/YOLOv6' target='_blank'>Github Repo</a>"
        " <center><img src='https://visitor-badge.glitch.me/badge?page_id=nateraw_yolov6' alt='visitor"
        " badge'></center></div>"
    ),
    allow_flagging=False,
    allow_screenshot=False,
)

if __name__ == "__main__":
    gr.TabbedInterface(
        [video_interface, image_interface, webcam_interface],
        ["Run on Videos!", "Run on Images!", "Run on Webcam!"],
    ).launch()