temp-9384289 commited on
Commit
b719bd3
·
1 Parent(s): 8ee4f0f
app.py CHANGED
@@ -19,12 +19,13 @@ import gradio as gr
19
  import base64
20
 
21
  modelieo=[
22
- 'nathanReitinger/MNIST-diffusion',
23
- 'nathanReitinger/MNIST-diffusion-oneImage',
24
- 'nathanReitinger/MNIST-GAN',
25
- 'nathanReitinger/MNIST-GAN-noDropout',
26
- 'nathanReitinger/FASHION-diffusion-oneImage'
27
- ]
 
28
 
29
  def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit, data_type):
30
  if data_type == 'mnist':
@@ -249,10 +250,10 @@ def TextToImage(Prompt,inference_steps, model):
249
  return [ai_gen, another_one]
250
 
251
  df = pd.DataFrame({
252
- "Model" : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout', 'FASHION-diffuion-oneImage'],
253
- "Class (Architecture)" : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential', 'UNet2DModel'],
254
- "Dataset Examples" : [60000, 1, 60000, 60000, 1],
255
- "Notes" : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'less dropout, more copying?', 'same diffusion, different data (more variance in data)']
256
  })
257
 
258
  # Applying style to highlight the maximum value in each row
 
19
  import base64
20
 
21
  modelieo=[
22
+ 'nathanReitinger/MNIST-diffusion',
23
+ 'nathanReitinger/MNIST-diffusion-oneImage',
24
+ 'nathanReitinger/MNIST-GAN',
25
+ 'nathanReitinger/MNIST-GAN-noDropout',
26
+ 'nathanReitinger/FASHION-diffusion-oneImage',
27
+ 'nathanReitinger/FASHION-diffusion'
28
+ ]
29
 
30
  def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit, data_type):
31
  if data_type == 'mnist':
 
250
  return [ai_gen, another_one]
251
 
252
  df = pd.DataFrame({
253
+ "Model" : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout', 'FASHION-diffuion-oneImage', 'FASHION-diffusion'],
254
+ "Class (Architecture)" : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential', 'UNet2DModel', 'UNet2DModel'],
255
+ "Dataset Examples" : [60000, 1, 60000, 60000, 1, 60000],
256
+ "Notes" : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'less dropout, more copying?', 'same diffusion, different data (more variance in data)','larger diffusion training data, on FASHION dataset']
257
  })
258
 
259
  # Applying style to highlight the maximum value in each row
tester/generation/1714576172.800183/generated_image.png ADDED
tester/generation/1714576198.7866518/generated_image.png ADDED
tester/generation/1714576319.815218/generated_image.png ADDED
tester/generation/1714576324.536125/generated_image.png ADDED
tester/generation/1714576327.55598/generated_image.png ADDED
tester/generation/1714576329.700929/generated_image.png ADDED
tester/generation/1714576332.2122922/generated_image.png ADDED
tester/generation/1714576334.483553/generated_image.png ADDED
tester/generation/1714576336.463327/generated_image.png ADDED
tester/generation/1714576350.8889668/generated_image.png ADDED
tester/generation/1714576355.338938/generated_image.png ADDED
tester/generation/1714576357.5262551/generated_image.png ADDED
tester/generation/1714576406.094669/generated_image.png ADDED