Nathan Luskey
added NER. Cleaned code
5fcd3cf
from ast import Str
import gradio as gr
from tweetnlp import Sentiment, NER
from typing import Tuple, Dict
from statistics import mean
def clean_tweet(tweet: str, remove_chars: str = "@#") -> str:
"""Remove any unwanted characters
Args:
tweet (str): The raw tweet
remove_chars (str, optional): The characters to remove. Defaults to "@#".
Returns:
str: The tweet with these characters removed
"""
for char in remove_chars:
tweet = tweet.replace(char, "")
return tweet
def format_sentiment(model_output: Dict) -> Dict:
"""Format the output of the sentiment model
Args:
model_output (Dict): The model output
Returns:
Dict: The format for gradio
"""
formatted_output = dict()
if model_output["label"] == "positive":
formatted_output["positive"] = model_output["probability"]
formatted_output["negative"] = 1 - model_output["probability"]
else:
formatted_output["negative"] = model_output["probability"]
formatted_output["positive"] = 1 - model_output["probability"]
return formatted_output
def format_entities(model_output: Dict) -> Dict:
"""Format the output of the NER model
Args:
model_output (Dict): The model output
Returns:
Dict: The format for gradio
"""
formatted_output = dict()
for entity in model_output["entity_prediction"]:
new_output = dict()
name = " ".join(entity["entity"])
entity_type = entity["type"]
new_key = f"{name}:{entity_type}"
new_value = mean(entity["probability"])
formatted_output[new_key] = new_value
return formatted_output
def classify(tweet: str) -> Tuple[Dict, Dict]:
"""Runs models
Args:
tweet (str): The raw tweet
Returns:
Tuple[Dict, Dict]: The formatted_sentiment and formatted_entities of the tweet
"""
tweet = clean_tweet(tweet)
# Get sentiment
model_sentiment = se_model.sentiment(tweet)
formatted_sentiment = format_sentiment(model_sentiment)
# Get entities
entities = ner_model.ner(tweet)
formatted_entities = format_entities(entities)
return formatted_sentiment, formatted_entities
if __name__ == "__main__":
# https://github.com/cardiffnlp/tweetnlp
se_model = Sentiment()
ner_model = NER()
# Get a few examples from: https://twitter.com/NFLFantasy
examples = list()
examples.append("Dameon Pierce is clearly the #Texans starter and he once again looks good")
examples.append("Deebo Samuel had 150+ receiving yards in 4 games last year - the most by any receiver in the league.")
iface = gr.Interface(fn=classify, inputs="text", outputs=["label", "label"], examples=examples)
iface.launch()