import gradio as gr from tweetnlp import Sentiment def classify(tweet): # return "Hello " + name + "!!" model_output = model.sentiment(tweet) # Fill in both positive and negative values if model_output["label"] == "positive": formatted_output = dict() formatted_output["positive"] = model_output["probability"] formatted_output["negative"] = 1 - model_output["probability"] else: formatted_output = dict() formatted_output["negative"] = model_output["probability"] formatted_output["positive"] = 1 - model_output["probability"] return formatted_output if __name__ == "__main__": # https://github.com/cardiffnlp/tweetnlp model = Sentiment() iface = gr.Interface(fn=classify, inputs="text", outputs="label") iface.launch()