import streamlit as st import pandas as pd import numpy as np import re import json import joblib from sklearn.feature_extraction.text import TfidfVectorizer # Impor library tambahan #import matplotlib.pyplot as plt #import seaborn as sns from wordcloud import WordCloud import nltk from nltk.corpus import stopwords #from transformers import pipeline # Fungsi untuk membersihkan teks dengan ekspresi reguler @st.cache_data def clean_text(text): # Tahap-1: Menghapus karakter non-ASCII text = re.sub(r'[^\x00-\x7F]+', '', text) # Tahap-2: Menghapus URL text = re.sub(r'http[s]?://.[a-zA-Z0-9./_?=%&#+!]+', '', text) text = re.sub(r'pic.twitter.com?.[a-zA-Z0-9./_?=%&#+!]+', '', text) # Tahap-3: Menghapus mentions text = re.sub(r'@[\w]+', '', text) # Tahap-4: Menghapus hashtag text = re.sub(r'#([\w]+)', '', text) # Tahap-5 Menghapus 'amp' yang menempel pada '&' dan 'gt' yang menempel pada '&' text = re.sub(r'&|>', '', text) # Tahap-6: Menghapus karakter khusus (simbol) text = re.sub(r'[!$%^&*@#()_+|~=`{}\[\]%\-:";\'<>?,./]', '', text) # Tahap-7: Menghapus angka text = re.sub(r'[0-9]+', '', text) # Tahap-8: Menggabungkan spasi ganda menjadi satu spasi text = re.sub(' +', ' ', text) # Tahap-9: Menghapus spasi di awal dan akhir kalimat text = text.strip() # Tahap-10: Konversi teks ke huruf kecil text = text.lower() # Tahap-11: koreksi duplikasi tiga karakter beruntun atau lebih (contoh. yukkk) # text = re.sub(r'([a-zA-Z])\1\1', '\\1', text) #text = re.sub(r'(.)(\1{2,})', r'\1\1', text) text = re.sub(r'(\w)\1{2,}', r'\1', text) return text # Membaca kamus kata gaul Salsabila kamus_path = '_json_colloquial-indonesian-lexicon (1).txt' # Ganti dengan path yang benar with open(kamus_path) as f: data = f.read() lookp_dict = json.loads(data) # Dict kata gaul saya sendiri yang tidak masuk di dict Salsabila kamus_sendiri_path = 'kamus_gaul_custom.txt' with open(kamus_sendiri_path) as f: kamus_sendiri = f.read() kamus_gaul_baru = json.loads(kamus_sendiri) # Menambahkan dict kata gaul baru ke kamus yang sudah ada lookp_dict.update(kamus_gaul_baru) # Fungsi untuk normalisasi kata gaul @st.cache_data def normalize_slang(text, slang_dict): words = text.split() normalized_words = [slang_dict.get(word, word) for word in words] return ' '.join(normalized_words) #---------------------------------------------------NLTK Remove Stopwords---------------------------------------------------------------------- # Inisialisasi stopwords bahasa Indonesia nltk.download("stopwords") stop_words = set(stopwords.words("indonesian")) def remove_stopwords(text, stop_words): # Pecah teks menjadi kata-kata words = text.split() # Hapus stopwords bahasa Indonesia words = [word for word in words if word not in stop_words] return " ".join(words) #---------------------------------------------------TFIDF---------------------------------------------------------------------- # Fungsi untuk ekstraksi fitur TF-IDF def extract_tfidf_features(texts, tfidf_vectorizer): tfidf_matrix = tfidf_vectorizer.transform(texts) return tfidf_matrix # Memuat model TF-IDF dengan joblib (pastikan path-nya benar) tfidf_model_path = 'X_tfidf_model.joblib' tfidf_vectorizer = joblib.load(tfidf_model_path) #---------------------------------------------------Milih Model---------------------------------------------------------------------- # Fungsi untuk memilih model berdasarkan pilihan pengguna def select_sentiment_model(selected_model): if selected_model == "Ensemble": model_path = 'ensemble_clf_soft_smote.joblib' elif selected_model == "Random Forest": model_path = 'best_rf_model_smote.joblib' elif selected_model == "Naive Bayes": model_path = 'naive_bayes_model_smote.joblib' elif selected_model == "Logistic Regression": model_path = 'logreg_model_smote.joblib' else: # Fallback ke model default jika pilihan tidak valid model_path = 'ensemble_clf_soft_smote.joblib' model = joblib.load(model_path) return model # Fungsi untuk prediksi sentimen def predict_sentiment(text, model, tfidf_vectorizer, slang_dict): # Tahap-1: Membersihkan dan normalisasi teks cleaned_text = clean_text(text) norm_slang_text = normalize_slang(cleaned_text, slang_dict) # Tahap-2: Ekstraksi fitur TF-IDF tfidf_matrix = tfidf_vectorizer.transform([norm_slang_text]) # Tahap-3: Lakukan prediksi sentimen sentiment = model.predict(tfidf_matrix) # Tahap-4: Menggantikan indeks dengan label sentimen labels = {0: "Negatif", 1: "Netral", 2: "Positif"} sentiment_label = labels[int(sentiment)] return sentiment_label def get_emoticon(sentiment): if sentiment == "Positif": emoticon = "😄" # Emotikon untuk sentimen positif elif sentiment == "Negatif": emoticon = "😞" # Emotikon untuk sentimen negatif else: emoticon = "😐" # Emotikon untuk sentimen netral return emoticon def buat_chart(df, target_year): st.write(f"Bar Chart Tahun {target_year}:") # Ambil bulan df['at'] = pd.to_datetime(df['at']) # Convert 'at' column to datetime df['month'] = df['at'].dt.month df['year'] = df['at'].dt.year # Filter DataFrame for the desired year df_filtered = df[df['year'] == target_year] # Check if data for the target year is available if df_filtered.empty: st.warning(f"Tidak ada data untuk tahun {target_year}.") return # Mapping nilai bulan ke nama bulan bulan_mapping = { 1: f'Januari {target_year}', 2: f'Februari {target_year}', 3: f'Maret {target_year}', 4: f'April {target_year}', 5: f'Mei {target_year}', 6: f'Juni {target_year}', 7: f'Juli {target_year}', 8: f'Agustus {target_year}', 9: f'September {target_year}', 10: f'Oktober {target_year}', 11: f'November {target_year}', 12: f'Desember {target_year}' } # Mengganti nilai dalam kolom 'month' menggunakan mapping df_filtered['month'] = df_filtered['month'].replace(bulan_mapping) # Menentukan warna untuk setiap kategori dalam kolom 'score' warna_label = { 'Negatif': '#FF9AA2', 'Netral': '#FFDAC1', 'Positif': '#B5EAD7' } # Sorting unique scores unique_label = sorted(df_filtered['label'].unique()) # Ensure months are in the correct order months_order = [ f'Januari {target_year}', f'Februari {target_year}', f'Maret {target_year}', f'April {target_year}', f'Mei {target_year}', f'Juni {target_year}', f'Juli {target_year}', f'Agustus {target_year}', f'September {target_year}', f'Oktober {target_year}', f'November {target_year}', f'Desember {target_year}' ] # Sort DataFrame based on the custom order of months df_filtered['month'] = pd.Categorical(df_filtered['month'], categories=months_order, ordered=True) df_filtered = df_filtered.sort_values('month') # Create a bar chart with stacking and manual colors st.bar_chart( df_filtered.groupby(['month', 'label']).size().unstack().fillna(0), color=[warna_label[label] for label in unique_label] ) # Fungsi untuk membuat tautan unduhan def get_table_download_link(df, download_format): if download_format == "XLSX": df.to_excel("hasil_sentimen.xlsx", index=False) return f'Unduh File XLSX' else: csv = df.to_csv(index=False) return f'Unduh File CSV' # Judul st.title("Analisis Sentimen Based on Tweets Biskita Transpakuan") #-----------------------------------------------------General Settings--------------------------------------------------------------- with st.expander("General Settings :"): # Tambahkan widget untuk memilih model selected_model = st.selectbox("Pilih Model Sentimen:", ("Ensemble", "Naive Bayes", "Logistic Regression", "Transformer")) # Memilih model sentimen berdasarkan pilihan pengguna sentiment_model = select_sentiment_model(selected_model) # Pilihan input teks manual atau berkas XLSX input_option = st.radio("Pilih metode input:", ("Teks Manual", "Unggah Berkas XLSX")) if input_option == "Teks Manual": # Input teks dari pengguna user_input = st.text_area("Masukkan teks:", "") else: # Input berkas XLSX uploaded_file = st.file_uploader("Unggah berkas XLSX", type=["xlsx"]) st.write("**Pastikan berkas XLSX Anda memiliki kolom yang bernama 'Text'.**") if uploaded_file is not None: df = pd.read_excel(uploaded_file) if 'Text' not in df.columns: st.warning("Berkas XLSX harus memiliki kolom bernama 'Text' untuk analisis sentimen.") if df['Text'] is None : st.warning("Kolom 'Text' harus mempunyai value.") else: texts = df['Text'] # Sesuaikan dengan nama kolom di berkas XLSX Anda if "Date" in df.columns : if df['Date'] is not None : dates = df['Date'] target_year = st.selectbox("Pilih Tahun Bar Chart :", dates.unique()) #-----------------------------------------------------Preference Settings-------------------------------------------------- with st.expander ("Preference Settings :"): colormap = st.selectbox("Pilih Warna Wordclouds :", ["Greys", "Purples", "Blues", "Greens", "Oranges", "Reds", "YlOrBr", "YlOrRd", "OrRd", "PuRd", "RdPu", "BuPu", "GnBu", "PuBu", "YlGnBu", "PuBuGn", "BuGn", "YlGn"]) # Analisis sentimen results = [] analisis = False if st.button("Analysis") and input_option == "Teks Manual" and user_input: # Pisahkan teks yang dimasukkan pengguna menjadi baris-baris terpisah user_texts = user_input.split('\n') for text in user_texts: sentiment_label = predict_sentiment(text, sentiment_model, tfidf_vectorizer, lookp_dict) emoticon = get_emoticon(sentiment_label) cleaned_text = clean_text(text) norm_slang_text = normalize_slang(cleaned_text, lookp_dict) tanpa_stopwords = remove_stopwords(norm_slang_text, stop_words) results.append({ 'Text': text, 'cleaned-text' : cleaned_text, 'normalisasi-text' : norm_slang_text, 'stopwords-remove' : tanpa_stopwords, 'label' : sentiment_label, 'emotikon' : emoticon, }) analisis = True elif input_option == "Unggah Berkas XLSX" and uploaded_file is not None: if 'Text' in df.columns: for text in texts: sentiment_label = predict_sentiment(text, sentiment_model, tfidf_vectorizer, lookp_dict) emoticon = get_emoticon(sentiment_label) cleaned_text = clean_text(text) norm_slang_text = normalize_slang(cleaned_text, lookp_dict) if dates in df.columns : for date in dates : results.append({ 'Date' : date, 'Text': text, 'cleaned-text' : cleaned_text, 'normalisasi-text' : norm_slang_text, 'stopwords-remove' : tanpa_stopwords, 'label' : sentiment_label, 'emotikon' : emoticon, }) else : results.append({ 'Text': text, 'cleaned-text' : cleaned_text, 'normalisasi-text' : norm_slang_text, 'stopwords-remove' : tanpa_stopwords, 'label' : sentiment_label, 'emotikon' : emoticon, }) analisis = True else: st.warning("Berkas XLSX harus memiliki kolom bernama 'Text' untuk analisis sentimen.") st.info('Tekan "Analysis" kembali jika tampilan menghilang', icon = 'ℹī¸') if results and analisis == True: df_results = pd.DataFrame(results) # Membagi tampilan menjadi dua kolom columns = st.columns(2) # Kolom pertama untuk Word Cloud with columns[0]: st.write("Wordclouds") all_texts = [result['stopwords-remove'] for result in results if result['stopwords-remove'] is not None and not pd.isna(result['stopwords-remove'])] all_texts = " ".join(all_texts) if all_texts: wordcloud = WordCloud(width=800, height=660, background_color='white', colormap=colormap, # Warna huruf contour_color='black', # Warna kontur contour_width=2, # Lebar kontur mask=None, # Gunakan mask untuk bentuk kustom ).generate(all_texts) st.image(wordcloud.to_array()) else: st.write("Tidak ada data untuk ditampilkan dalam Word Cloud.") if 'Date' in df_results.columns: if df_results['Date'] is not None: with columns[1]: buat_chart(df_results, target_year) else : # Kolom kedua untuk Bar Chart with columns[1]: st.write("Bar Chart :") # Menentukan warna untuk setiap kategori dalam kolom 'score' warna_label = { 'Negatif': '#FF9AA2', 'Netral': '#FFDAC1', 'Positif': '#B5EAD7' } st.bar_chart( df_results["label"].value_counts() ) # Menampilkan hasil analisis sentimen dalam kotak yang dapat diperluas with st.expander("Hasil Analisis Sentimen"): # Tampilkan tabel hasil analisis sentimen st.write(pd.DataFrame(results)) if results: # Simpan DataFrame ke dalam file CSV df = pd.DataFrame(results) csv = df.to_csv(index=False) # Tampilkan tombol unduh CSV st.download_button(label="Unduh CSV", data=csv, key="csv_download", file_name="hasil_sentimen.csv") else: st.write("Tidak ada data untuk diunduh.") # Garis pemisah st.divider() # Tautan ke GitHub github_link = "https://github.com/naufalnashif/" st.markdown(f"GitHub: [{github_link}]({github_link})") # Tautan ke Instagram instagram_link = "https://www.instagram.com/naufal.nashif/" st.markdown(f"Instagram: [{instagram_link}]({instagram_link})") # Pesan penutup st.write('Thank you for trying the demo!') st.write('Best regards, Naufal Nashif')