Spaces:
Runtime error
Runtime error
File size: 14,540 Bytes
b8b107d 6ed4b2f b8b107d 1abdacb b8b107d 1abdacb b8b107d c8746df b8b107d c8746df b8b107d c8746df a96179f c8746df 7ad8d81 b8b107d 6ed4b2f b8b107d c8746df 7ad8d81 b8b107d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import pandas as pd
from utils import normalize_text
import streamlit as st
from itertools import chain
from collections import Counter
### Data paths
# WIKIPEDIA_PATH = "./kensho_en_wiki_typing_technical.csv"
# WIKIDATA_PATH = "./wikidata_ss_processed.csv"
# REBEL_INFER_PATH = "./rebel_inference_processed_ss.csv"
# ENTITY_LINKING_PATH = "./linking_df_technical_min.csv"
relation_to_id = {
"uses": 2283,
"has_use": 366,
"part_of": 361,
"has_part": 527,
"made_from_material": 186,
"material_of": 186
}
inverse_dict = {
'uses': 'has_use',
'has_use': 'uses',
'has_part': 'part_of',
'part_of': 'has_part',
'made_from_material': 'material_of',
'material_of': 'made_from_material'
}
all_relations = ['uses', 'has_part', 'has_use', 'part_of', 'made_from_material', 'material_of']
st.title("Materials use case search app")
# User Input
input_text = st.text_input(
label="Enter the name of a material i.e iron, ceramic, steel, aluminum, plastic, etc and press Enter",
value="iron",
key="ent",
)
st.write("preparing data ...")
# Wikipedia metadata
@st.cache_data(persist="disk")
def get_wiki_df(path="./kensho_en_wiki_typing_technical.csv"):
wiki_df = pd.read_csv(path)
# filter out technical articles
exclude_ids = set(wiki_df[(wiki_df.exclude == True) | (wiki_df.technical == False)].page_id.to_list())
include_skpes = set(wiki_df[wiki_df.page_id.apply(lambda x: x not in exclude_ids)].skpe_id.to_list())
skpe_to_wikidata = dict(zip(wiki_df.skpe_id.to_list(), wiki_df.item_id.to_list()))
wiki_df = wiki_df.drop(columns=['Unnamed: 0', 'en_probs', 'exclude'])
wiki_df = wiki_df.rename(columns={'title_x': 'en_title'})
return wiki_df, include_skpes, skpe_to_wikidata
wiki_df, include_skpes, skpe_to_wikidata = get_wiki_df()
# KG data source 1: Wikidata
# @st.cache_data(persist="disk")
def get_wikidata_df(path="./wikidata_ss_processed.csv"):
wikidata_df = pd.read_csv(path)
# filter technical wikidata
wikidata_df = wikidata_df[wikidata_df.apply(lambda x: x.source_skpe in include_skpes and x.target_skpe in include_skpes, axis=1)]
wikidata_df['source_wikidata'] = wikidata_df.source_skpe.apply(lambda x: skpe_to_wikidata[x])
wikidata_df['target_wikidata'] = wikidata_df.target_skpe.apply(lambda x: skpe_to_wikidata[x])
wikidata_df = wikidata_df.drop(columns=['source_skpe', 'target_skpe'])
wikidata_df['source'] = 'wikidata'
return wikidata_df
## wikidata_df = get_wikidata_df()
# @st.cache_data(persist="disk")
def get_rebel_infer_df(path="./rebel_inference_processed_ss.csv"):
rebel_infer_df = pd.read_csv(path)
# filter technical
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: type(x.source_skpe_id) == str and type(x.target_skpe_id) == str, axis=1)]
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: x.source_skpe_id in skpe_to_wikidata.keys() and x.target_skpe_id in skpe_to_wikidata.keys(), axis=1)]
rebel_infer_df['source_wikidata'] = rebel_infer_df.source_skpe_id.apply(lambda x: skpe_to_wikidata[x])
rebel_infer_df['target_wikidata'] = rebel_infer_df.target_skpe_id.apply(lambda x: skpe_to_wikidata[x])
# rebel_infer_df['title_page_id'] = rebel_infer_df.page_skpe_id.apply(lambda x: skpe_to_wikidata[x])
rebel_infer_df = rebel_infer_df.drop(columns=['instance_id', 'source_text', 'target_text', 'page_skpe_id', 'source_skpe_id', 'target_skpe_id'])
rebel_infer_df = rebel_infer_df.rename(columns={'source_skpe_id': 'source_skpe', 'target_skpe_id': 'target_skpe', 'source': 'source_en', 'target': 'target_en'})
rebel_infer_df = rebel_infer_df[rebel_infer_df.source_wikidata != rebel_infer_df.target_wikidata]
rebel_infer_df['source'] = 'rebel_wikipedia'
return rebel_infer_df
## rebel_infer_df = get_rebel_infer_df()
# Add luke df
# Data source 3: luke inference
# @st.cache_data(persist="disk")
def get_luke_infer_df(path="./luke_fulltext_ss_infer_20240112.csv"):
luke_infer_df = pd.read_csv(path)
luke_infer_df = luke_infer_df.rename(columns={"source_mention": "source_en", "target_mention": "target_en", "pred": "relation"})
luke_infer_df = luke_infer_df.drop(columns=["page_id", "sent_id", "model"])
luke_infer_df['source'] = 'luke_wikipedia_20240112'
return luke_infer_df
## luke_infer_df = get_luke_infer_df()
# Build instance df
@st.cache_data(persist="disk")
def build_instance_df():
wikidata_df = get_wikidata_df()
rebel_infer_df = get_rebel_infer_df()
luke_infer_df = get_luke_infer_df()
instance_df = pd.concat([wikidata_df, rebel_infer_df, luke_infer_df])
# instance_df = instance_df.reset_index(drop=True)
instance_df['instance_id'] = instance_df.index.to_list()
instance_df.relation = instance_df.relation.apply(lambda x: x.replace(' ', '_'))
instance_df['inv_relation'] = instance_df.relation.apply(lambda x: inverse_dict[x])
instance_df.score = instance_df.score.fillna(1.0)
# instance_df = instance_df[instance_df.source == 'luke_wikipedia_20240112']
return instance_df
instance_df = build_instance_df()
# Get KG df
@st.cache_data(persist="disk")
def get_kg_df(path="./kg_master_ss_sample_20240215.csv"):
kg_df = pd.read_csv(path)
kg_df['kg_id'] = kg_df.index
kg_df = kg_df[kg_df.mode_relation.apply(lambda x: x in ['material_of', 'part_of', 'has_use'])]
kg_min_df = kg_df[['kg_id', 'source_en', 'source_wikidata', 'mode_relation' ,'target_en', 'target_wikidata']].copy()
return kg_df, kg_min_df
kg_df, kg_min_df = get_kg_df()
# Get entity linking df
@st.cache_data(persist="disk")
def get_entity_linking_df(path="./linking_df_technical_min.csv"):
linking_df = pd.read_csv(path)
return linking_df
st.write("matching input text ...")
linking_df = get_entity_linking_df()
### Start ###
# normalise and match
text_norm = normalize_text(input_text)
match_df = linking_df[linking_df.text == text_norm]
match_df = match_df[match_df.skpe_id.apply(lambda x: x in skpe_to_wikidata.keys())]
match_df['wikidata_id'] = match_df.skpe_id.apply(lambda x: skpe_to_wikidata[x])
# top match skpe
if len(match_df) > 0:
top_wikidata = match_df.wikidata_id.mode()[0]
all_wikidata = set(match_df.wikidata_id.to_list())
wikidata_to_count = dict(match_df.wikidata_id.value_counts())
# Match list
wiki_match_df = wiki_df[wiki_df.item_id.apply(lambda x: x in all_wikidata)].copy()
wiki_match_df['link_score'] = wiki_match_df['item_id'].apply(lambda x: wikidata_to_count[x] / sum(wikidata_to_count.values()))
wiki_match_df = wiki_match_df.sort_values(by='link_score', ascending=False)
# show similar results
st.write(f"Found following matches for the term {input_text}")
wiki_match_df.sort_values(by='views', ascending=False)[:5]
# proceeding with top match
st.write("Performing use case extraction for the following top match ...")
wiki_df[wiki_df.item_id.apply(lambda x: x == top_wikidata)]
# Stuff that are made out of input
start_df = kg_min_df[(kg_min_df.source_wikidata == top_wikidata) & (kg_min_df.mode_relation == 'material_of')].copy()
# made_of_list = made_of_df.source_wikidata.to_list()
if len(start_df) > 0:
st.write(f"Discovered following entities made out of {input_text}")
start_df
st.write("Extracting knowledge graph paths ...")
### Length 2 paths
path_2_df = start_df.merge(
kg_min_df[kg_min_df.mode_relation == 'has_use'],
left_on='target_wikidata',
right_on='source_wikidata',
how='inner')
path_2_df = path_2_df.rename(columns={
'kg_id_x': 'first_relation_id',
'source_en_x': 'first_source_en',
'source_wikidata_x': 'first_source_wikidata',
'mode_relation_x': 'first_mode_relation',
'target_en_x': 'first_target_en',
'target_wikidata_x': 'first_target_wikidata',
'kg_id_y': 'second_relation_id',
'source_en_y': 'second_source_en',
'source_wikidata_y': 'second_source_wikidata',
'mode_relation_y': 'second_mode_relation',
'target_en_y': 'second_target_en',
'target_wikidata_y': 'second_target_wikidata',
})
path_2_df['path_len'] = 2
### Length 3 paths
path_3_df = start_df.merge(
kg_min_df[kg_min_df.mode_relation == 'part_of'],
left_on='target_wikidata',
right_on='source_wikidata',
how='inner').merge(
kg_min_df[kg_min_df.mode_relation == 'has_use'],
left_on='target_wikidata_y',
right_on='source_wikidata',
how='inner'
)
path_3_df = path_3_df.rename(columns={
'kg_id_x': 'first_relation_id',
'source_en_x': 'first_source_en',
'source_wikidata_x': 'first_source_wikidata',
'mode_relation_x': 'first_mode_relation',
'target_en_x': 'first_target_en',
'target_wikidata_x': 'first_target_wikidata',
'kg_id_y': 'second_relation_id',
'source_en_y': 'second_source_en',
'source_wikidata_y': 'second_source_wikidata',
'mode_relation_y': 'second_mode_relation',
'target_en_y': 'second_target_en',
'target_wikidata_y': 'second_target_wikidata',
'kg_id': 'third_relation_id',
'source_en': 'third_source_en',
'source_wikidata': 'third_source_wikidata',
'mode_relation': 'third_mode_relation',
'target_en': 'third_target_en',
'target_wikidata': 'third_target_wikidata',
})
path_3_df['path_len'] = 3
path_df = pd.concat([path_2_df, path_3_df])
# sample max
## path_df = path_df.sample(min(20, len(path_df)))
### End
if len(path_df) > 0:
st.write(f"Found {len(path_df)} knowledge graph paths relevant to use cases of {input_text}")
st.write("------")
# print all paths
for i, path in enumerate(path_df.to_dict(orient='records')):
if i > 5:
break
material = path['first_source_en']
material_wikidata = path['first_source_wikidata']
material_url = f"https://www.wikidata.org/wiki/Q{material_wikidata}"
use_case = path['third_target_en'] if path['path_len'] == 3 else path['second_target_en']
use_case_wikidata = path['third_target_wikidata'] if path['path_len'] == 3 else path['second_target_wikidata']
use_case_url = f"https://www.wikidata.org/wiki/Q{use_case_wikidata}"
st.write(f"**Reasoning Path {i+1}:**")
# for edge in path:
edge_prefixes = ['first', 'second', 'third']
for k in range(path['path_len']):
prefix = edge_prefixes[k]
source_wikidata = int(path[f'{prefix}_source_wikidata'])
target_wikidata = int(path[f'{prefix}_target_wikidata'])
source_url = "https://www.wikidata.org/wiki/Q" + str(source_wikidata)
target_url = "https://www.wikidata.org/wiki/Q" + str(target_wikidata)
relation_url = "https://www.wikidata.org/wiki/Property:P" + str(int(relation_to_id[path[f'{prefix}_mode_relation']]))
source_en = path[f'{prefix}_source_en']
target_en = path[f'{prefix}_target_en']
relation = path[f'{prefix}_mode_relation']
st.markdown(f"Edge {k+1}: [{source_en}]({source_url}) --[{relation}]({relation_url})--> [{target_en}]({target_url})")
with st.expander("Edge Metadata"):
rel_id = path[f'{prefix}_relation_id']
rel_data = kg_df[kg_df.kg_id == rel_id].to_dict(orient='records')[0]
instance_ids = eval(rel_data[f'{relation}_instances'])
instances = instance_df.loc[instance_ids]
neg_instance_ids = list(chain.from_iterable([eval(rel_data[k]) for k in rel_data.keys() if '_instances' in k and relation not in k]))
neg_instances = instance_df.loc[neg_instance_ids]
# extra filtering
instances = instances[instances.apply(lambda x: x.source_wikidata in [source_wikidata, target_wikidata] and x.target_wikidata in [source_wikidata, target_wikidata], axis=1)]
# neg_instances = neg_instances[neg_instances.apply(lambda x: x.source_wikidata in [source_wikidata, target_wikidata] and x.target_wikidata in [source_wikidata, target_wikidata], axis=1)]
st.write(f"**Total Number of Inference Instances:** {int(rel_data['n_evidence'])}")
st.write(f"**Number of Instances that support the most frequent relation:** {int(rel_data['n_support'])}")
st.write(f"**Support Ratio:** {rel_data['support_ratio']}")
st.write(f"**Average Inference Score:** {rel_data['avg_score']}")
st.write("Inferences supporting the relation")
instances[['source_en', 'relation', 'target_en', 'text', 'source_wikidata', 'target_wikidata', 'source', 'page_title', 'score', 'section']]
st.write("Other inferences involving the same edge")
neg_instances[['source_en', 'relation', 'target_en', 'text', 'source_wikidata', 'target_wikidata', 'source', 'page_title', 'score', 'section']]
count_dict = {relation: rel_data[f'{relation}_support'] for relation in all_relations}
count_df = pd.DataFrame.from_dict(count_dict, orient='index')
count_df.columns = ['count']
st.write("Inference distribution for above edge")
count_df
st.write("**Conclusion:**")
st.write(f"[{material}]({material_url}) is useful for [{use_case}]({use_case_url})")
st.write("------")
else:
st.write("Found no knowledge graph paths relevant to use cases")
else:
st.write("Found no entities that are made from {input_text}")
else:
st.write("no matches") |