File size: 12,357 Bytes
f712093
 
7c9c787
 
 
 
 
 
 
918c36e
 
7c9c787
ff817a8
 
f712093
7c9c787
f712093
 
ff817a8
f712093
 
 
 
 
 
 
 
 
 
 
 
7c9c787
a1a6155
 
f712093
918c36e
 
 
dee72a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f712093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d10d9
f712093
 
 
 
 
 
c9d10d9
 
 
 
 
 
 
 
 
 
9b938a9
 
 
f33af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f712093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e158c
 
 
 
 
 
 
 
 
 
f712093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c9c787
f712093
7c9c787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f712093
7c9c787
 
 
 
 
f712093
7c9c787
 
 
f712093
7c9c787
f712093
7c9c787
f712093
7c9c787
 
f712093
7c9c787
f712093
 
 
 
 
 
 
7c9c787
f712093
7c9c787
 
cad81c3
2afd000
cad81c3
 
 
 
 
7c9c787
 
 
 
1b9694d
7c9c787
 
 
 
38a2b24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import sys
from pathlib import Path
import os
import torch
import openvino as ov
import gradio as gr
import langid
import ipywidgets as widgets
from IPython.display import Audio
# from openvoice.api import BaseSpeakerTTS, ToneColorConverter, OpenVoiceBaseClass
# import openvoice.se_extractor as se_extractor
import nncf
import subprocess


# Clone the repo and set up the environment
repo_dir = Path("OpenVoice")
if not repo_dir.exists():
    subprocess.run(["git", "clone", "https://github.com/myshell-ai/OpenVoice"])
    orig_english_path = Path("OpenVoice/openvoice/text/_orig_english.py")
    english_path = Path("OpenVoice/openvoice/text/english.py")

    english_path.rename(orig_english_path)

    with orig_english_path.open("r") as f:
        data = f.read()
        data = data.replace("unidecode", "anyascii")
        with english_path.open("w") as out_f:
            out_f.write(data)
sys.path.append(str(repo_dir))

# Install the required packages
# %pip install -q "librosa>=0.8.1" "wavmark>=0.0.3" "faster-whisper>=0.9.0" "pydub>=0.25.1" "whisper-timestamped>=1.14.2" "tqdm" "inflect>=7.0.0" "eng_to_ipa>=0.0.2" "pypinyin>=0.50.0" \
# "cn2an>=0.5.22" "jieba>=0.42.1" "langid>=1.1.6" "gradio>=4.15" "ipywebrtc" "anyascii" "openvino>=2023.3" "torch>=2.1" "nncf>=2.11.0"

from openvoice.api import BaseSpeakerTTS, ToneColorConverter, OpenVoiceBaseClass
import openvoice.se_extractor as se_extractor

packages = [
    "librosa>=0.8.1",
    "wavmark>=0.0.3",
    "faster-whisper>=0.9.0",
    "pydub>=0.25.1",
    "whisper-timestamped>=1.14.2",
    "tqdm",
    "inflect>=7.0.0",
    "eng_to_ipa>=0.0.2",
    "pypinyin>=0.50.0",
    "ipywidgets"
]

subprocess.run(["pip", "install"] + packages, check=True)

core = ov.Core()

CKPT_BASE_PATH = "checkpoints"

en_suffix = f"{CKPT_BASE_PATH}/base_speakers/EN"
zh_suffix = f"{CKPT_BASE_PATH}/base_speakers/ZH"
converter_suffix = f"{CKPT_BASE_PATH}/converter"

enable_chinese_lang = False

def download_from_hf_hub(filename, local_dir="./"):
    from huggingface_hub import hf_hub_download
    os.makedirs(local_dir, exist_ok=True)
    hf_hub_download(repo_id="myshell-ai/OpenVoice", filename=filename, local_dir=local_dir)

download_from_hf_hub(f"{converter_suffix}/checkpoint.pth")
download_from_hf_hub(f"{converter_suffix}/config.json")
download_from_hf_hub(f"{en_suffix}/checkpoint.pth")
download_from_hf_hub(f"{en_suffix}/config.json")

download_from_hf_hub(f"{en_suffix}/en_default_se.pth")
download_from_hf_hub(f"{en_suffix}/en_style_se.pth")

if enable_chinese_lang:
    download_from_hf_hub(f"{zh_suffix}/checkpoint.pth")
    download_from_hf_hub(f"{zh_suffix}/config.json")
    download_from_hf_hub(f"{zh_suffix}/zh_default_se.pth")

pt_device = "cpu"

en_base_speaker_tts = BaseSpeakerTTS(f"{en_suffix}/config.json", device=pt_device)
en_base_speaker_tts.load_ckpt(f"{en_suffix}/checkpoint.pth")

tone_color_converter = ToneColorConverter(f"{converter_suffix}/config.json", device=pt_device)
tone_color_converter.load_ckpt(f"{converter_suffix}/checkpoint.pth")

if enable_chinese_lang:
    zh_base_speaker_tts = BaseSpeakerTTS(f"{zh_suffix}/config.json", device=pt_device)
    zh_base_speaker_tts.load_ckpt(f"{zh_suffix}/checkpoint.pth")
else:
    zh_base_speaker_tts = None

class OVOpenVoiceBase(torch.nn.Module):
    def __init__(self, voice_model: OpenVoiceBaseClass):
        super().__init__()
        self.voice_model = voice_model
        for par in voice_model.model.parameters():
            par.requires_grad = False

class OVOpenVoiceTTS(OVOpenVoiceBase):
    def get_example_input(self):
        stn_tst = self.voice_model.get_text("this is original text", self.voice_model.hps, False)
        x_tst = stn_tst.unsqueeze(0)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
        speaker_id = torch.LongTensor([1])
        noise_scale = torch.tensor(0.667)
        length_scale = torch.tensor(1.0)
        noise_scale_w = torch.tensor(0.6)
        return (
            x_tst,
            x_tst_lengths,
            speaker_id,
            noise_scale,
            length_scale,
            noise_scale_w,
        )

    def forward(self, x, x_lengths, sid, noise_scale, length_scale, noise_scale_w):
        return self.voice_model.model.infer(x, x_lengths, sid, noise_scale, length_scale, noise_scale_w)

class OVOpenVoiceConverter(OVOpenVoiceBase):
    def get_example_input(self):
        y = torch.randn([1, 513, 238], dtype=torch.float32)
        y_lengths = torch.LongTensor([y.size(-1)])
        target_se = torch.randn(*(1, 256, 1))
        source_se = torch.randn(*(1, 256, 1))
        tau = torch.tensor(0.3)
        return (y, y_lengths, source_se, target_se, tau)

    def forward(self, y, y_lengths, sid_src, sid_tgt, tau):
        return self.voice_model.model.voice_conversion(y, y_lengths, sid_src, sid_tgt, tau)

IRS_PATH = "openvino_irs/"
EN_TTS_IR = f"{IRS_PATH}/openvoice_en_tts.xml"
ZH_TTS_IR = f"{IRS_PATH}/openvoice_zh_tts.xml"
VOICE_CONVERTER_IR = f"{IRS_PATH}/openvoice_tone_conversion.xml"

paths = [EN_TTS_IR, VOICE_CONVERTER_IR]
models = [
    OVOpenVoiceTTS(en_base_speaker_tts),
    OVOpenVoiceConverter(tone_color_converter),
]
if enable_chinese_lang:
    models.append(OVOpenVoiceTTS(zh_base_speaker_tts))
    paths.append(ZH_TTS_IR)
ov_models = []

for model, path in zip(models, paths):
    if not os.path.exists(path):
        ov_model = ov.convert_model(model, example_input=model.get_example_input())
        ov_model = nncf.compress_weights(ov_model)
        ov.save_model(ov_model, path)
    else:
        ov_model = core.read_model(path)
    ov_models.append(ov_model)

ov_en_tts, ov_voice_conversion = ov_models[:2]
if enable_chinese_lang:
    ov_zh_tts = ov_models[-1]


REFERENCE_VOICES_PATH = f"{repo_dir}/resources/"
reference_speakers = [
    *[path for path in os.listdir(REFERENCE_VOICES_PATH) if os.path.splitext(path)[-1] == ".mp3"],
    "record_manually",
    "load_manually",
]

ref_speaker = widgets.Dropdown(
    options=reference_speakers,
    value=reference_speakers[0],
    description="reference voice from which tone color will be copied",
    disabled=False,
)

ref_speaker

OUTPUT_DIR = "outputs/"
os.makedirs(OUTPUT_DIR, exist_ok=True)

ref_speaker_path = f"{REFERENCE_VOICES_PATH}/{ref_speaker.value}"
allowed_audio_types = ".mp4,.mp3,.wav,.wma,.aac,.m4a,.m4b,.webm"

if ref_speaker.value == "record_manually":
    ref_speaker_path = f"{OUTPUT_DIR}/custom_example_sample.webm"
    from ipywebrtc import AudioRecorder, CameraStream

    camera = CameraStream(constraints={"audio": True, "video": False})
    recorder = AudioRecorder(stream=camera, filename=ref_speaker_path, autosave=True)
    display(recorder)
    
elif ref_speaker.value == "load_manually":
    upload_ref = widgets.FileUpload(
        accept=allowed_audio_types,
        multiple=False,
        description="Select audio with reference voice",
    )
    display(upload_ref)
    
def save_audio(voice_source: widgets.FileUpload, out_path: str):
    with open(out_path, "wb") as output_file:
        assert len(voice_source.value) > 0, "Please select audio file"
        output_file.write(voice_source.value[0]["content"])

en_source_default_se = torch.load(f"{en_suffix}/en_default_se.pth")
en_source_style_se = torch.load(f"{en_suffix}/en_style_se.pth")
zh_source_se = torch.load(f"{zh_suffix}/zh_default_se.pth") if enable_chinese_lang else None

target_se, audio_name = se_extractor.get_se(ref_speaker_path, tone_color_converter, target_dir=OUTPUT_DIR, vad=True)

def get_pathched_infer(ov_model: ov.Model, device: str) -> callable:
    compiled_model = core.compile_model(ov_model, device)

    def infer_impl(x, x_lengths, sid, noise_scale, length_scale, noise_scale_w):
        ov_output = compiled_model((x, x_lengths, sid, noise_scale, length_scale, noise_scale_w))
        return (torch.tensor(ov_output[0]),)

    return infer_impl

def get_patched_voice_conversion(ov_model: ov.Model, device: str) -> callable:
    compiled_model = core.compile_model(ov_model, device)

    def voice_conversion_impl(y, y_lengths, sid_src, sid_tgt, tau):
        ov_output = compiled_model((y, y_lengths, sid_src, sid_tgt, tau))
        return (torch.tensor(ov_output[0]),)

    return voice_conversion_impl

core = ov.Core()

device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value="AUTO",
    description="Device:",
    disabled=False,
)
device

en_base_speaker_tts.model.infer = get_pathched_infer(ov_en_tts, device.value)
tone_color_converter.model.voice_conversion = get_patched_voice_conversion(ov_voice_conversion, device.value)
if enable_chinese_lang:
    zh_base_speaker_tts.model.infer = get_pathched_infer(ov_zh_tts, device.value)

supported_languages = ["zh", "en"]

def build_predict(
    output_dir,
    tone_color_converter,
    en_tts_model,
    zh_tts_model,
    en_source_default_se,
    en_source_style_se,
    zh_source_se,
    supported_languages,
):
    def predict(
        input_text,
        reference_audio,
        speaker,
        noise_scale=0.667,
        length_scale=1.0,
        noise_scale_w=0.8,
        tone_color=False,
    ):
        if reference_audio:
            ref_audio_path = f"{output_dir}/input_audio.wav"
            save_audio(reference_audio, ref_audio_path)
            target_se, _ = se_extractor.get_se(ref_audio_path, tone_color_converter, target_dir=output_dir, vad=True)
        else:
            if speaker == "record_manually":
                raise ValueError("Manual recording is not implemented in this example.")
            elif speaker == "load_manually":
                raise ValueError("Loading a manual audio file is not implemented in this example.")
            else:
                ref_audio_path = f"{REFERENCE_VOICES_PATH}/{speaker}"
                target_se, _ = se_extractor.get_se(ref_audio_path, tone_color_converter, target_dir=output_dir, vad=True)
        
        lang = langid.classify(input_text)[0]
        if lang not in supported_languages:
            return f"Unsupported language: {lang}"

        tts_model = en_tts_model if lang == "en" else zh_tts_model

        stn_tst = tts_model.get_text(input_text, tts_model.hps, False)
        x_tst = stn_tst.unsqueeze(0)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
        speaker_id = torch.LongTensor([1])
        noise_scale = torch.tensor(noise_scale)
        length_scale = torch.tensor(length_scale)
        noise_scale_w = torch.tensor(noise_scale_w)

        with torch.no_grad():
            audio = tts_model.model.infer(x_tst, x_tst_lengths, speaker_id, noise_scale, length_scale, noise_scale_w)[0]
            if tone_color:
                source_se = en_source_style_se if lang == "en" else zh_source_se
                audio = tone_color_converter.model.voice_conversion(audio, x_tst_lengths, source_se, target_se, torch.tensor(0.3))[0]

        audio = audio.squeeze().cpu().numpy()
        output_path = f"{output_dir}/output_audio.wav"
        Audio(audio, rate=tts_model.hps.data.sampling_rate).save(output_path)

        return output_path

    return predict

OUTPUT_DIR = "output_audio"
os.makedirs(OUTPUT_DIR, exist_ok=True)

predict_fn = build_predict(
    OUTPUT_DIR,
    tone_color_converter,
    en_base_speaker_tts,
    zh_base_speaker_tts,
    en_source_default_se,
    en_source_style_se,
    zh_source_se,
    supported_languages,
)

def gradio_interface():
    input_text = gr.Textbox(lines=2, placeholder="Enter text here...")
    reference_audio = gr.Audio(type="filepath", label="Reference Audio")
    speaker = gr.Dropdown(choices=reference_speakers, value="record_manually", label="Select Speaker")
    noise_scale = gr.Slider(minimum=0.1, maximum=1.0, value=0.667, label="Noise Scale")
    length_scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Length Scale")
    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, label="Noise Scale W")
    tone_color = gr.Checkbox(value=False, label="Enable Tone Color Conversion")

    gr.Interface(
        fn=predict_fn,
        inputs=[input_text, reference_audio, speaker, noise_scale, length_scale, noise_scale_w, tone_color],
        outputs=gr.Audio(type="filepath", label="Generated Audio"),
        title="Speech Generation and Tone Conversion",
        description="Generate speech and convert tone using the OpenVoice model.",
    ).launch()

# end