Spaces:
Runtime error
Runtime error
File size: 17,969 Bytes
4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 0d4c732 cb415f3 4f4656c cb415f3 fb46c66 cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c cb415f3 4f4656c 24dc2ac 4f4656c cb415f3 4f4656c cb415f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import torch
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
import gradio as gr
import os, json
import numpy as np
from PIL import Image
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from pipelines.pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
from diffusers import ControlNetModel, AutoencoderKL
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from random import randint
from utils import init_latent
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from diffusers import DDIMScheduler
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
def memory_efficient(model):
try:
model.to(device)
except Exception as e:
print("Error moving model to device:", e)
try:
model.enable_model_cpu_offload()
except AttributeError:
print("enable_model_cpu_offload is not supported.")
try:
model.enable_vae_slicing()
except AttributeError:
print("enable_vae_slicing is not supported.")
if device == 'cuda':
try:
model.enable_xformers_memory_efficient_attention()
except AttributeError:
print("enable_xformers_memory_efficient_attention is not supported.")
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
model_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
)
model = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
print("vae")
memory_efficient(vae)
print("control")
memory_efficient(controlnet)
print("ControlNet-SDXL")
memory_efficient(model_controlnet)
print("SDXL")
memory_efficient(model)
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch_dtype).to(device)
# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1)
def parse_config(config):
with open(config, 'r') as f:
config = json.load(f)
return config
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
with torch.no_grad(), torch.autocast(device):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def get_depth_edge_array(depth_img_path):
depth_image_tmp = Image.fromarray(depth_img_path)
# get depth map
depth_map = get_depth_map(depth_image_tmp)
return depth_map
def blip_inf_prompt(image):
inputs = blip_processor(images=image, return_tensors="pt").to(device, torch.float16)
generated_ids = blip_model.generate(**inputs)
generated_text = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
def load_example_controlnet():
folder_path = 'assets/ref'
examples = []
for filename in os.listdir(folder_path):
if filename.endswith((".png")):
image_path = os.path.join(folder_path, filename)
image_name = os.path.basename(image_path)
style_name = image_name.split('_')[1]
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object_name = config["inference_info"]["inf_object_list"][0]
canny_path = './assets/depth_dir/gundam.png'
image_info = [image_path, canny_path, style_name, inf_object_name, 1, 0.5, 50]
examples.append(image_info)
return examples
def load_example_style():
folder_path = 'assets/ref'
examples = []
for filename in os.listdir(folder_path):
if filename.endswith((".png")):
image_path = os.path.join(folder_path, filename)
image_name = os.path.basename(image_path)
style_name = image_name.split('_')[1]
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object_name = config["inference_info"]["inf_object_list"][0]
image_info = [image_path, style_name, inf_object_name, 1, 50]
examples.append(image_info)
return examples
def style_fn(image_path, style_name, content_text, output_number, diffusion_step=50):
user_image_flag = not style_name.strip() # empty
if not user_image_flag:
real_img = None
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object = content_text
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
ref_seed = config['reference_info']['ref_seeds'][0]
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
guidance_scale = config['guidance_scale']
use_inf_negative_prompt = config['inference_info']['use_negative_prompt']
ref_object = config["reference_info"]["ref_object_list"][0]
ref_with_style_description = config['reference_info']['with_style_description']
inf_with_style_description = config['inference_info']['with_style_description']
use_shared_attention = config['inference_info']['use_shared_attention']
adain_queries = config['inference_info']['adain_queries']
adain_keys = config['inference_info']['adain_keys']
adain_values = config['inference_info']['adain_values']
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
use_prompt_as_null = False
style_name = config["style_name_list"][0]
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
STYLE_DESCRIPTION_DICT[style_name][1]
if ref_with_style_description:
ref_prompt = style_description_pos.replace("{object}", ref_object)
else:
ref_prompt = ref_object
if inf_with_style_description:
inf_prompt = style_description_pos.replace("{object}", inf_object)
else:
inf_prompt = inf_object
else:
model.scheduler = DDIMScheduler.from_config(model.scheduler.config)
origin_real_img = Image.open(image_path).resize((1024, 1024), resample=Image.BICUBIC)
real_img = np.array(origin_real_img).astype(np.float32) / 255.0
style_name = 'default'
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object = content_text
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
ref_seed = 0
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
guidance_scale = config['guidance_scale']
use_inf_negative_prompt = False
use_shared_attention = config['inference_info']['use_shared_attention']
adain_queries = config['inference_info']['adain_queries']
adain_keys = config['inference_info']['adain_keys']
adain_values = config['inference_info']['adain_values']
use_advanced_sampling = False
use_prompt_as_null = True
ref_prompt = blip_inf_prompt(origin_real_img).to(device)
inf_prompt = inf_object
style_description_neg = None
# Inference
with torch.inference_mode():
grid = None
for activate_layer_indices in activate_layer_indices_list:
for activate_step_indices in activate_step_indices_list:
str_activate_layer, str_activate_step = model.activate_layer(
activate_layer_indices=activate_layer_indices,
attn_map_save_steps=attn_map_save_steps,
activate_step_indices=activate_step_indices, use_shared_attention=use_shared_attention,
adain_queries=adain_queries,
adain_keys=adain_keys,
adain_values=adain_values,
)
ref_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=ref_seed)
latents = [ref_latent]
num_images_per_prompt = len(inf_seeds) + 1
for inf_seed in inf_seeds:
# latents.append(model.get_init_latent(inf_seed, precomputed_path=None))
inf_latent = init_latent(model, device_name=device, dtype=torch_dtype, seed=inf_seed)
latents.append(inf_latent)
latents = torch.cat(latents, dim=0)
latents.to(device)
images = model(
prompt=ref_prompt,
negative_prompt=style_description_neg,
guidance_scale=guidance_scale,
num_inference_steps=diffusion_step,
latents=latents,
num_images_per_prompt=num_images_per_prompt,
target_prompt=inf_prompt,
use_inf_negative_prompt=use_inf_negative_prompt,
use_advanced_sampling=use_advanced_sampling,
use_prompt_as_null=use_prompt_as_null,
image=real_img
)[0][1:]
n_row = 1
n_col = len(inf_seeds)
# make grid
grid = create_image_grid(images, n_row, n_col, padding=10)
return grid
def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
config_path = './config/{}.json'.format(style_name)
config = parse_config(config_path)
inf_object = content_text
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))]
# inf_seeds = [i for i in range(int(output_number))]
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list']
activate_step_indices_list = config['inference_info']['activate_step_indices_list']
ref_seed = config['reference_info']['ref_seeds'][0]
attn_map_save_steps = config['inference_info']['attn_map_save_steps']
guidance_scale = config['guidance_scale']
use_inf_negative_prompt = config['inference_info']['use_negative_prompt']
style_name = config["style_name_list"][0]
ref_object = config["reference_info"]["ref_object_list"][0]
ref_with_style_description = config['reference_info']['with_style_description']
inf_with_style_description = config['inference_info']['with_style_description']
use_shared_attention = config['inference_info']['use_shared_attention']
adain_queries = config['inference_info']['adain_queries']
adain_keys = config['inference_info']['adain_keys']
adain_values = config['inference_info']['adain_values']
use_advanced_sampling = config['inference_info']['use_advanced_sampling']
#get canny edge array
depth_image = get_depth_edge_array(depth_image_path)
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \
STYLE_DESCRIPTION_DICT[style_name][1]
# Inference
with torch.inference_mode():
grid = None
if ref_with_style_description:
ref_prompt = style_description_pos.replace("{object}", ref_object)
else:
ref_prompt = ref_object
if inf_with_style_description:
inf_prompt = style_description_pos.replace("{object}", inf_object)
else:
inf_prompt = inf_object
for activate_layer_indices in activate_layer_indices_list:
for activate_step_indices in activate_step_indices_list:
str_activate_layer, str_activate_step = model_controlnet.activate_layer(
activate_layer_indices=activate_layer_indices,
attn_map_save_steps=attn_map_save_steps,
activate_step_indices=activate_step_indices,
use_shared_attention=use_shared_attention,
adain_queries=adain_queries,
adain_keys=adain_keys,
adain_values=adain_values,
)
# ref_latent = model_controlnet.get_init_latent(ref_seed, precomputed_path=None)
ref_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=ref_seed)
latents = [ref_latent]
for inf_seed in inf_seeds:
# latents.append(model_controlnet.get_init_latent(inf_seed, precomputed_path=None))
inf_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=inf_seed)
latents.append(inf_latent)
latents = torch.cat(latents, dim=0)
latents.to(device)
images = model_controlnet.generated_ve_inference(
prompt=ref_prompt,
negative_prompt=style_description_neg,
guidance_scale=guidance_scale,
num_inference_steps=diffusion_step,
controlnet_conditioning_scale=controlnet_scale,
latents=latents,
num_images_per_prompt=len(inf_seeds) + 1,
target_prompt=inf_prompt,
image=depth_image,
use_inf_negative_prompt=use_inf_negative_prompt,
use_advanced_sampling=use_advanced_sampling
)[0][1:]
n_row = 1
n_col = len(inf_seeds) # μλ³ΈμΆκ°νλ €λ©΄ + 1
# make grid
grid = create_image_grid(images, n_row, n_col)
return grid
description_md = """
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N).
### π [[Paper](https://arxiv.org/abs/2402.12974)] | β¨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | β¨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
---
### π₯ To try out our vanilla demo,
1. Choose a `style reference` from the collection of images below.
2. Enter the `text prompt`.
3. Choose the `number of outputs`.
---
### β¨ Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
### βΌοΈ w/ ControlNet ver does not support user style images.
### π₯ To try out our demo with ControlNet,
1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
2. Choose `ControlNet scale` which determines the alignment to the depthmap.
3. Choose a `style reference` from the collection of images below.
4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
5. Choose the `number of outputs`.
### π To achieve faster results, we recommend lowering the diffusion steps to 30.
### Enjoy ! π
"""
iface_style = gr.Interface(
fn=style_fn,
inputs=[
gr.components.Image(label="Style Image", type="filepath"),
gr.components.Textbox(label='Style name', visible=False),
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
],
outputs=gr.components.Image(label="Generated Image"),
title="π¨ Visual Style Prompting (default)",
description=description_md,
examples=load_example_style(),
)
iface_controlnet = gr.Interface(
fn=controlnet_fn,
inputs=[
gr.components.Image(label="Style image"),
gr.components.Image(label="Depth image"),
gr.components.Textbox(label='Style name', visible=False),
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"),
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"),
gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
],
outputs=gr.components.Image(label="Generated Image"),
title="π¨ Visual Style Prompting (w/ ControlNet)",
description=description_md,
examples=load_example_controlnet(),
)
iface = gr.TabbedInterface([iface_style, iface_controlnet], ["Vanilla", "w/ ControlNet"])
iface.launch(debug=True) |