Spaces:
Runtime error
Runtime error
File size: 12,309 Bytes
e977050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import torch
from pipelines.inverted_ve_pipeline import CrossFrameAttnProcessor, CrossFrameAttnProcessor_store, ACTIVATE_LAYER_CANDIDATE
from diffusers import DDIMScheduler, AutoencoderKL
import os
from PIL import Image
from utils import memory_efficient
from diffusers.models.attention_processor import AttnProcessor
from pipeline_stable_diffusion_xl_attn import StableDiffusionXLPipeline
def create_image_grid(image_list, rows, cols, padding=10):
# Ensure the number of rows and columns doesn't exceed the number of images
rows = min(rows, len(image_list))
cols = min(cols, len(image_list))
# Get the dimensions of a single image
image_width, image_height = image_list[0].size
# Calculate the size of the output image
grid_width = cols * (image_width + padding) - padding
grid_height = rows * (image_height + padding) - padding
# Create an empty grid image
grid_image = Image.new('RGB', (grid_width, grid_height), (255, 255, 255))
# Paste images into the grid
for i, img in enumerate(image_list[:rows * cols]):
row = i // cols
col = i % cols
x = col * (image_width + padding)
y = row * (image_height + padding)
grid_image.paste(img, (x, y))
return grid_image
def transform_variable_name(input_str, attn_map_save_step):
# Split the input string into parts using the dot as a separator
parts = input_str.split('.')
# Extract numerical indices from the parts
indices = [int(part) if part.isdigit() else part for part in parts]
# Build the desired output string
output_str = f'pipe.unet.{indices[0]}[{indices[1]}].{indices[2]}[{indices[3]}].{indices[4]}[{indices[5]}].{indices[6]}.attn_map[{attn_map_save_step}]'
return output_str
num_images_per_prompt = 4
seeds=[1] #craft_clay
activate_layer_indices_list = [
# ((0,28),(108,140)),
# ((0,48), (68,140)),
# ((0,48), (88,140)),
# ((0,48), (108,140)),
# ((0,48), (128,140)),
# ((0,48), (140,140)),
# ((0,28), (68,140)),
# ((0,28), (88,140)),
# ((0,28), (108,140)),
# ((0,28), (128,140)),
# ((0,28), (140,140)),
# ((0,8), (68,140)),
# ((0,8), (88,140)),
# ((0,8), (108,140)),
# ((0,8), (128,140)),
# ((0,8), (140,140)),
# ((0,0), (68,140)),
# ((0,0), (88,140)),
((0,0), (108,140)),
# ((0,0), (128,140)),
# ((0,0), (140,140))
]
save_layer_list = [
# 'up_blocks.0.attentions.1.transformer_blocks.0.attn1.processor', #68
# 'up_blocks.0.attentions.1.transformer_blocks.4.attn2.processor', #78
# 'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor', #88
# 'up_blocks.0.attentions.2.transformer_blocks.4.attn2.processor', #108
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', #128
# 'up_blocks.1.attentions.2.transformer_blocks.1.attn1.processor', #138
'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor', #108
'up_blocks.0.attentions.2.transformer_blocks.0.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.1.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.1.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.2.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.2.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.3.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.3.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.4.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.4.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.5.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.5.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.6.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.6.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.7.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.7.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.8.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.8.attn2.processor',
'up_blocks.0.attentions.2.transformer_blocks.9.attn1.processor',
'up_blocks.0.attentions.2.transformer_blocks.9.attn2.processor',
'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', #128
'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor',
'up_blocks.1.attentions.0.transformer_blocks.1.attn1.processor',
'up_blocks.1.attentions.0.transformer_blocks.1.attn2.processor',
'up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor',
'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor',
'up_blocks.1.attentions.1.transformer_blocks.1.attn1.processor',
'up_blocks.1.attentions.1.transformer_blocks.1.attn2.processor',
'up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor',
'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor',
'up_blocks.1.attentions.2.transformer_blocks.1.attn1.processor',
'up_blocks.1.attentions.2.transformer_blocks.1.attn2.processor',
]
attn_map_save_steps = [20]
# attn_map_save_steps = [10,20,30,40]
results_dir = 'saved_attention_map_results'
if not os.path.exists(results_dir):
os.makedirs(results_dir)
base_model_path = "runwayml/stable-diffusion-v1-5"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "models/image_encoder/"
object_list = [
"cat",
# "woman",
# "dog",
# "horse",
# "motorcycle"
]
target_object_list = [
# "Null",
"dog",
# "clock",
# "car"
# "panda",
# "bridge",
# "flower"
]
prompt_neg_prompt_pair_dicts = {
# "line_art": ("line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
# "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic"
# ) ,
# "anime": ("anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
# "photo, deformed, black and white, realism, disfigured, low contrast"
# ),
# "Artstyle_Pop_Art" : ("pop Art style {prompt} . bright colors, bold outlines, popular culture themes, ironic or kitsch",
# "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist"
# ),
# "Artstyle_Pointillism": ("pointillism style {prompt} . composed entirely of small, distinct dots of color, vibrant, highly detailed",
# "line drawing, smooth shading, large color fields, simplistic"
# ),
# "origami": ("origami style {prompt} . paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition",
# "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
# ),
"craft_clay": ("play-doh style {prompt} . sculpture, clay art, centered composition, Claymation",
"sloppy, messy, grainy, highly detailed, ultra textured, photo"
),
# "low_poly" : ("low-poly style {prompt} . low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
# "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
# ),
# "Artstyle_watercolor": ("watercolor painting {prompt} . vibrant, beautiful, painterly, detailed, textural, artistic",
# "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy"
# ),
# "Papercraft_Collage" : ("collage style {prompt} . mixed media, layered, textural, detailed, artistic",
# "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic"
# ),
# "Artstyle_Impressionist" : ("impressionist painting {prompt} . loose brushwork, vibrant color, light and shadow play, captures feeling over form",
# "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy"
# )
}
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
vae = AutoencoderKL.from_pretrained(vae_model_path, torch_dtype=torch_dtype)
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype)
memory_efficient(vae, device)
memory_efficient(pipe, device)
for seed in seeds:
for activate_layer_indices in activate_layer_indices_list:
attn_procs = {}
activate_layers = []
str_activate_layer = ""
for activate_layer_index in activate_layer_indices:
activate_layers += ACTIVATE_LAYER_CANDIDATE[activate_layer_index[0]:activate_layer_index[1]]
str_activate_layer += str(activate_layer_index)
for name in pipe.unet.attn_processors.keys():
if name in activate_layers:
if name in save_layer_list:
print(f"layer:{name}")
attn_procs[name] = CrossFrameAttnProcessor_store(unet_chunk_size=2, attn_map_save_steps=attn_map_save_steps)
else:
print(f"layer:{name}")
attn_procs[name] = CrossFrameAttnProcessor(unet_chunk_size=2)
else :
attn_procs[name] = AttnProcessor()
pipe.unet.set_attn_processor(attn_procs)
for target_object in target_object_list:
target_prompt = f"A photo of a {target_object}"
for object in object_list:
for key in prompt_neg_prompt_pair_dicts.keys():
prompt, negative_prompt = prompt_neg_prompt_pair_dicts[key]
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt=prompt.replace("{prompt}", object),
guidance_scale = 7.0,
num_images_per_prompt = num_images_per_prompt,
target_prompt = target_prompt,
generator=generator,
)[0]
#make grid
grid = create_image_grid(images, 1, num_images_per_prompt)
save_name = f"{key}_src_{object}_tgt_{target_object}_activate_layer_{str_activate_layer}_seed_{seed}.png"
save_path = os.path.join(results_dir, save_name)
grid.save(save_path)
print("Saved image to: ", save_path)
#save attn map
for attn_map_save_step in attn_map_save_steps:
attn_map_save_name = f"attn_map_raw_{key}_src_{object}_tgt_{target_object}_activate_layer_{str_activate_layer}_attn_map_step_{attn_map_save_step}_seed_{seed}.pt"
attn_map_dic = {}
# for activate_layer in activate_layers:
for activate_layer in save_layer_list:
attn_map_var_name = transform_variable_name(activate_layer, attn_map_save_step)
exec(f"attn_map_dic[\"{activate_layer}\"] = {attn_map_var_name}")
torch.save(attn_map_dic, os.path.join(results_dir, attn_map_save_name))
print("Saved attn map to: ", os.path.join(results_dir, attn_map_save_name))
|