Spaces:
Runtime error
Runtime error
import torch | |
from pipelines.inverted_ve_pipeline import CrossFrameAttnProcessor, CrossFrameAttnProcessor_store, ACTIVATE_LAYER_CANDIDATE | |
from diffusers import DDIMScheduler, AutoencoderKL | |
import os | |
from PIL import Image | |
from utils import memory_efficient | |
from diffusers.models.attention_processor import AttnProcessor | |
from pipeline_stable_diffusion_xl_attn import StableDiffusionXLPipeline | |
def create_image_grid(image_list, rows, cols, padding=10): | |
# Ensure the number of rows and columns doesn't exceed the number of images | |
rows = min(rows, len(image_list)) | |
cols = min(cols, len(image_list)) | |
# Get the dimensions of a single image | |
image_width, image_height = image_list[0].size | |
# Calculate the size of the output image | |
grid_width = cols * (image_width + padding) - padding | |
grid_height = rows * (image_height + padding) - padding | |
# Create an empty grid image | |
grid_image = Image.new('RGB', (grid_width, grid_height), (255, 255, 255)) | |
# Paste images into the grid | |
for i, img in enumerate(image_list[:rows * cols]): | |
row = i // cols | |
col = i % cols | |
x = col * (image_width + padding) | |
y = row * (image_height + padding) | |
grid_image.paste(img, (x, y)) | |
return grid_image | |
def transform_variable_name(input_str, attn_map_save_step): | |
# Split the input string into parts using the dot as a separator | |
parts = input_str.split('.') | |
# Extract numerical indices from the parts | |
indices = [int(part) if part.isdigit() else part for part in parts] | |
# Build the desired output string | |
output_str = f'pipe.unet.{indices[0]}[{indices[1]}].{indices[2]}[{indices[3]}].{indices[4]}[{indices[5]}].{indices[6]}.attn_map[{attn_map_save_step}]' | |
return output_str | |
num_images_per_prompt = 4 | |
seeds=[1] #craft_clay | |
activate_layer_indices_list = [ | |
# ((0,28),(108,140)), | |
# ((0,48), (68,140)), | |
# ((0,48), (88,140)), | |
# ((0,48), (108,140)), | |
# ((0,48), (128,140)), | |
# ((0,48), (140,140)), | |
# ((0,28), (68,140)), | |
# ((0,28), (88,140)), | |
# ((0,28), (108,140)), | |
# ((0,28), (128,140)), | |
# ((0,28), (140,140)), | |
# ((0,8), (68,140)), | |
# ((0,8), (88,140)), | |
# ((0,8), (108,140)), | |
# ((0,8), (128,140)), | |
# ((0,8), (140,140)), | |
# ((0,0), (68,140)), | |
# ((0,0), (88,140)), | |
((0,0), (108,140)), | |
# ((0,0), (128,140)), | |
# ((0,0), (140,140)) | |
] | |
save_layer_list = [ | |
# 'up_blocks.0.attentions.1.transformer_blocks.0.attn1.processor', #68 | |
# 'up_blocks.0.attentions.1.transformer_blocks.4.attn2.processor', #78 | |
# 'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor', #88 | |
# 'up_blocks.0.attentions.2.transformer_blocks.4.attn2.processor', #108 | |
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', #128 | |
# 'up_blocks.1.attentions.2.transformer_blocks.1.attn1.processor', #138 | |
'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor', #108 | |
'up_blocks.0.attentions.2.transformer_blocks.0.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.1.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.1.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.2.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.2.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.3.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.3.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.4.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.4.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.5.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.5.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.6.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.6.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.7.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.7.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.8.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.8.attn2.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.9.attn1.processor', | |
'up_blocks.0.attentions.2.transformer_blocks.9.attn2.processor', | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', #128 | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', | |
'up_blocks.1.attentions.0.transformer_blocks.1.attn1.processor', | |
'up_blocks.1.attentions.0.transformer_blocks.1.attn2.processor', | |
'up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor', | |
'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', | |
'up_blocks.1.attentions.1.transformer_blocks.1.attn1.processor', | |
'up_blocks.1.attentions.1.transformer_blocks.1.attn2.processor', | |
'up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor', | |
'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor', | |
'up_blocks.1.attentions.2.transformer_blocks.1.attn1.processor', | |
'up_blocks.1.attentions.2.transformer_blocks.1.attn2.processor', | |
] | |
attn_map_save_steps = [20] | |
# attn_map_save_steps = [10,20,30,40] | |
results_dir = 'saved_attention_map_results' | |
if not os.path.exists(results_dir): | |
os.makedirs(results_dir) | |
base_model_path = "runwayml/stable-diffusion-v1-5" | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
image_encoder_path = "models/image_encoder/" | |
object_list = [ | |
"cat", | |
# "woman", | |
# "dog", | |
# "horse", | |
# "motorcycle" | |
] | |
target_object_list = [ | |
# "Null", | |
"dog", | |
# "clock", | |
# "car" | |
# "panda", | |
# "bridge", | |
# "flower" | |
] | |
prompt_neg_prompt_pair_dicts = { | |
# "line_art": ("line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics", | |
# "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic" | |
# ) , | |
# "anime": ("anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
# "photo, deformed, black and white, realism, disfigured, low contrast" | |
# ), | |
# "Artstyle_Pop_Art" : ("pop Art style {prompt} . bright colors, bold outlines, popular culture themes, ironic or kitsch", | |
# "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist" | |
# ), | |
# "Artstyle_Pointillism": ("pointillism style {prompt} . composed entirely of small, distinct dots of color, vibrant, highly detailed", | |
# "line drawing, smooth shading, large color fields, simplistic" | |
# ), | |
# "origami": ("origami style {prompt} . paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition", | |
# "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo" | |
# ), | |
"craft_clay": ("play-doh style {prompt} . sculpture, clay art, centered composition, Claymation", | |
"sloppy, messy, grainy, highly detailed, ultra textured, photo" | |
), | |
# "low_poly" : ("low-poly style {prompt} . low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition", | |
# "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo" | |
# ), | |
# "Artstyle_watercolor": ("watercolor painting {prompt} . vibrant, beautiful, painterly, detailed, textural, artistic", | |
# "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy" | |
# ), | |
# "Papercraft_Collage" : ("collage style {prompt} . mixed media, layered, textural, detailed, artistic", | |
# "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic" | |
# ), | |
# "Artstyle_Impressionist" : ("impressionist painting {prompt} . loose brushwork, vibrant color, light and shadow play, captures feeling over form", | |
# "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy" | |
# ) | |
} | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device == 'cpu': | |
torch_dtype = torch.float32 | |
else: | |
torch_dtype = torch.float16 | |
vae = AutoencoderKL.from_pretrained(vae_model_path, torch_dtype=torch_dtype) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype) | |
memory_efficient(vae, device) | |
memory_efficient(pipe, device) | |
for seed in seeds: | |
for activate_layer_indices in activate_layer_indices_list: | |
attn_procs = {} | |
activate_layers = [] | |
str_activate_layer = "" | |
for activate_layer_index in activate_layer_indices: | |
activate_layers += ACTIVATE_LAYER_CANDIDATE[activate_layer_index[0]:activate_layer_index[1]] | |
str_activate_layer += str(activate_layer_index) | |
for name in pipe.unet.attn_processors.keys(): | |
if name in activate_layers: | |
if name in save_layer_list: | |
print(f"layer:{name}") | |
attn_procs[name] = CrossFrameAttnProcessor_store(unet_chunk_size=2, attn_map_save_steps=attn_map_save_steps) | |
else: | |
print(f"layer:{name}") | |
attn_procs[name] = CrossFrameAttnProcessor(unet_chunk_size=2) | |
else : | |
attn_procs[name] = AttnProcessor() | |
pipe.unet.set_attn_processor(attn_procs) | |
for target_object in target_object_list: | |
target_prompt = f"A photo of a {target_object}" | |
for object in object_list: | |
for key in prompt_neg_prompt_pair_dicts.keys(): | |
prompt, negative_prompt = prompt_neg_prompt_pair_dicts[key] | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
images = pipe( | |
prompt=prompt.replace("{prompt}", object), | |
guidance_scale = 7.0, | |
num_images_per_prompt = num_images_per_prompt, | |
target_prompt = target_prompt, | |
generator=generator, | |
)[0] | |
#make grid | |
grid = create_image_grid(images, 1, num_images_per_prompt) | |
save_name = f"{key}_src_{object}_tgt_{target_object}_activate_layer_{str_activate_layer}_seed_{seed}.png" | |
save_path = os.path.join(results_dir, save_name) | |
grid.save(save_path) | |
print("Saved image to: ", save_path) | |
#save attn map | |
for attn_map_save_step in attn_map_save_steps: | |
attn_map_save_name = f"attn_map_raw_{key}_src_{object}_tgt_{target_object}_activate_layer_{str_activate_layer}_attn_map_step_{attn_map_save_step}_seed_{seed}.pt" | |
attn_map_dic = {} | |
# for activate_layer in activate_layers: | |
for activate_layer in save_layer_list: | |
attn_map_var_name = transform_variable_name(activate_layer, attn_map_save_step) | |
exec(f"attn_map_dic[\"{activate_layer}\"] = {attn_map_var_name}") | |
torch.save(attn_map_dic, os.path.join(results_dir, attn_map_save_name)) | |
print("Saved attn map to: ", os.path.join(results_dir, attn_map_save_name)) | |