gw.kim
commited on
Commit
·
4ace749
1
Parent(s):
60d698c
initial commit
Browse files- app.py +69 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Donut
|
3 |
+
Copyright (c) 2022-present NAVER Corp.
|
4 |
+
MIT License
|
5 |
+
|
6 |
+
https://github.com/clovaai/donut
|
7 |
+
"""
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from donut import DonutModel
|
15 |
+
|
16 |
+
|
17 |
+
def demo_process_vqa(input_img, question):
|
18 |
+
global pretrained_model, task_prompt, task_name
|
19 |
+
input_img = Image.fromarray(input_img)
|
20 |
+
user_prompt = task_prompt.replace("{user_input}", question)
|
21 |
+
output = pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
22 |
+
return output
|
23 |
+
|
24 |
+
|
25 |
+
def demo_process(input_img):
|
26 |
+
global pretrained_model, task_prompt, task_name
|
27 |
+
input_img = Image.fromarray(input_img)
|
28 |
+
output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
|
29 |
+
return output
|
30 |
+
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
parser.add_argument("--task", type=str, default="cord-v2")
|
35 |
+
parser.add_argument("--pretrained_path", type=str, default="naver-clova-ix/donut-base-finetuned-cord-v2")
|
36 |
+
parser.add_argument("--port", type=int, default=None)
|
37 |
+
parser.add_argument("--url", type=str, default=None)
|
38 |
+
parser.add_argument("--sample_img_path", type=str)
|
39 |
+
args, left_argv = parser.parse_known_args()
|
40 |
+
|
41 |
+
task_name = args.task
|
42 |
+
if "docvqa" == task_name:
|
43 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
44 |
+
else: # rvlcdip, cord, ...
|
45 |
+
task_prompt = f"<s_{task_name}>"
|
46 |
+
|
47 |
+
example_sample = []
|
48 |
+
if args.sample_img_path:
|
49 |
+
example_sample.append(args.sample_img_path)
|
50 |
+
|
51 |
+
pretrained_model = DonutModel.from_pretrained(args.pretrained_path)
|
52 |
+
|
53 |
+
if torch.cuda.is_available():
|
54 |
+
pretrained_model.half()
|
55 |
+
device = torch.device("cuda")
|
56 |
+
pretrained_model.to(device)
|
57 |
+
else:
|
58 |
+
pretrained_model.encoder.to(torch.bfloat16)
|
59 |
+
|
60 |
+
pretrained_model.eval()
|
61 |
+
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=demo_process_vqa if task_name == "docvqa" else demo_process,
|
64 |
+
inputs=["image", "text"] if task_name == "docvqa" else "image",
|
65 |
+
outputs="json",
|
66 |
+
title=f"Donut 🍩 demonstration for `{task_name}` task",
|
67 |
+
examples=[example_sample] if example_sample else None,
|
68 |
+
)
|
69 |
+
demo.launch(server_name=args.url, server_port=args.port)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
donut-python
|
2 |
+
gradio
|