SuperFeatures / how /utils /whitening.py
YannisK's picture
temp state
32408ed
raw
history blame
989 Bytes
"""Functions for training and applying whitening"""
import numpy as np
def l2_normalize_vec(X):
"""L2-normalize given descriptors"""
return X / (np.linalg.norm(X, ord=2, axis=1, keepdims=True) + 1e-6)
def whitenapply(X, m, P, dimensions=None):
"""Apply whitening (m, P) on descriptors X. If dimensions not None, perform dim reduction."""
if not dimensions:
dimensions = P.shape[1]
X = np.dot(X-m, P[:, :dimensions])
return l2_normalize_vec(X)
def pcawhitenlearn_shrinkage(X, s=1.0):
"""Learn PCA whitening with shrinkage from given descriptors"""
N = X.shape[0]
# Learning PCA w/o annotations
m = X.mean(axis=0, keepdims=True)
Xc = X - m
Xcov = np.dot(Xc.T, Xc)
Xcov = (Xcov + Xcov.T) / (2*N)
eigval, eigvec = np.linalg.eig(Xcov)
order = eigval.argsort()[::-1]
eigval = eigval[order]
eigvec = eigvec[:, order]
P = np.dot(np.linalg.inv(np.diag(np.power(eigval, 0.5*s))), eigvec.T)
return m, P.T