File size: 17,767 Bytes
934fdee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import torch
import numpy as np
import pyrender
import trimesh
import math
from scipy.spatial.transform import Rotation
from PIL import ImageFont, ImageDraw, Image
OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def geotrf( Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim in (2,3)
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
ncol = ncol or pts.shape[-1]
# adapt shape if necessary
output_reshape = pts.shape[:-1]
if Trf.ndim == 3:
assert len(Trf) == len(pts), 'batch size does not match'
if Trf.ndim == 3 and pts.ndim > 3:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(pts.shape[0], -1, pts.shape[-1])
elif Trf.ndim == 3 and pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1]+1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf[...,:-1,:] + Trf[...,-1:,:]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2: pts = pts.swapaxes(-1,-2)
if norm:
pts = pts / pts[...,-1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1: pts *= norm
return pts[...,:ncol].reshape(*output_reshape, ncol)
def create_scene(img_pil, l_mesh, l_face, color=None, metallicFactor=0., roughnessFactor=0.5, focal=600):
scene = trimesh.Scene(
lights=trimesh.scene.lighting.Light(intensity=3.0)
)
# Human meshes
for i, mesh in enumerate(l_mesh):
if color is None:
_color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255)
else:
if isinstance(color,list):
_color = color[i]
elif isinstance(color,tuple):
_color = color
else:
raise NotImplementedError
mesh = trimesh.Trimesh(mesh, l_face[i])
mesh.visual = trimesh.visual.TextureVisuals(
uv=None,
material=trimesh.visual.material.PBRMaterial(
metallicFactor=metallicFactor,
roughnessFactor=roughnessFactor,
alphaMode='OPAQUE',
baseColorFactor=(_color[0], _color[1], _color[2], 1.0)
),
image=None,
face_materials=None
)
scene.add_geometry(mesh)
# Image
H, W = img_pil.size[0], img_pil.size[1]
screen_width = 0.3
height = focal * screen_width / H
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3,:3] = Rotation.from_euler('z',np.deg2rad(45)).as_matrix()
rot45[2,3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0,0] = W/H
transform = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4, transform=transform)
# cam.apply_transform(transform)
# import ipdb
# ipdb.set_trace()
# vertices = geotrf(transform, cam.vertices[[4,5,1,3]])
vertices = cam.vertices[[4,5,1,3]]
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
# img_pil = Image.fromarray((255. * np.ones((20,20,3))).astype(np.uint8)) # white only!
material = trimesh.visual.texture.SimpleMaterial(image=img_pil,
diffuse=[255,255,255,0],
ambient=[255,255,255,0],
specular=[255,255,255,0],
glossiness=1.0)
img.visual = trimesh.visual.TextureVisuals(uv=uv_coords, image=img_pil) #, material=material)
# _main_color = [255,255,255,0]
# print(img.visual.material.ambient)
# print(img.visual.material.diffuse)
# print(img.visual.material.specular)
# print(img.visual.material.main_color)
# img.visual.material.ambient = _main_color
# img.visual.material.diffuse = _main_color
# img.visual.material.specular = _main_color
# img.visual.material.main_color = _main_color
# img.visual.material.glossiness = _main_color
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3,:3] = Rotation.from_euler('z',np.deg2rad(2)).as_matrix()
# import ipdb
# ipdb.set_trace()
# vertices = cam.vertices
# print(rot2)
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
# vertices = np.r_[cam.vertices, 0.95*cam.vertices, 1.05*cam.vertices]
faces = []
for face in cam.faces:
if 0 in face: continue
a,b,c = face
a2,b2,c2 = face + len(cam.vertices)
a3,b3,c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a,b,b2))
faces.append((a,a2,c))
faces.append((c2,b,c))
faces.append((a,b,b3))
faces.append((a,a3,c))
faces.append((c3,b,c))
# no culling
faces += [(c,b,a) for a,b,c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:,:3] = (255, 0, 0)
scene.add_geometry(cam)
# OpenCV to OpenGL
rot = np.eye(4)
cams2world = np.eye(4)
rot[:3,:3] = Rotation.from_euler('y',np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world @ OPENCV_TO_OPENGL_CAMERA_CONVENTION @ rot))
return scene
def render_meshes(img, l_mesh, l_face, cam_param, color=None, alpha=1.0,
show_camera=False,
intensity=3.0,
metallicFactor=0., roughnessFactor=0.5, smooth=True,
):
"""
Rendering multiple mesh and project then in the initial image.
Args:
- img: np.array [w,h,3]
- l_mesh: np.array list of [v,3]
- l_face: np.array list of [f,3]
- cam_param: info about the camera intrinsics (focal, princpt) and (R,t) is possible
Return:
- img: np.array [w,h,3]
"""
# scene
scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3))
# mesh
for i, mesh in enumerate(l_mesh):
if color is None:
_color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255)
else:
if isinstance(color,list):
_color = color[i]
elif isinstance(color,tuple):
_color = color
else:
raise NotImplementedError
mesh = trimesh.Trimesh(mesh, l_face[i])
# import ipdb
# ipdb.set_trace()
# mesh.visual = trimesh.visual.TextureVisuals(
# uv=None,
# material=trimesh.visual.material.PBRMaterial(
# metallicFactor=metallicFactor,
# roughnessFactor=roughnessFactor,
# alphaMode='OPAQUE',
# baseColorFactor=(_color[0], _color[1], _color[2], 1.0)
# ),
# image=None,
# face_materials=None
# )
# print('saving')
# mesh.export('human.obj')
# mesh = trimesh.load('human.obj')
# print('loading')
# mesh = pyrender.Mesh.from_trimesh(mesh, smooth=smooth)
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=metallicFactor,
roughnessFactor=roughnessFactor,
alphaMode='OPAQUE',
baseColorFactor=(_color[0], _color[1], _color[2], 1.0))
mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=smooth)
scene.add(mesh, f"mesh_{i}")
# Adding coordinate system at (0,0,2) for the moment
# Using lines defined in pyramid https://docs.pyvista.org/version/stable/api/utilities/_autosummary/pyvista.Pyramid.html
if show_camera:
import pyvista
def get_faces(x):
return x.faces.astype(np.uint32).reshape((x.n_faces, 4))[:, 1:]
# Camera = Box + Cone (or Cylinder?)
material_cam = pyrender.MetallicRoughnessMaterial(metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=(0.5,0.5,0.5))
height = 0.2
radius = 0.1
cone = pyvista.Cone(center=(0.0, 0.0, -height/2), direction=(0.0, 0.0, -1.0), height=height, radius=radius).extract_surface().triangulate()
verts = cone.points
mesh = pyrender.Mesh.from_trimesh(trimesh.Trimesh(verts, get_faces(cone)), material=material_cam, smooth=smooth)
scene.add(mesh, f"cone")
size = 0.1
box = pyvista.Box(bounds=(-size, size,
-size, size,
verts[:,-1].min() - 3*size, verts[:,-1].min())).extract_surface().triangulate()
verts = box.points
mesh = pyrender.Mesh.from_trimesh(trimesh.Trimesh(verts, get_faces(box)), material=material_cam, smooth=smooth)
scene.add(mesh, f"box")
# Coordinate system
# https://docs.pyvista.org/version/stable/api/utilities/_autosummary/pyvista.Arrow.html
l_color = [(1,0,0,1.0), (0,1,0,1.0), (0,0,1,1.0)]
l_direction = [(1,0,0), (0,1,0), (0,0,1)]
scale = 0.2
pose3d = [2*scale, 0.0, -scale]
for i in range(len(l_color)):
arrow = pyvista.Arrow(direction=l_direction[i], scale=scale)
arrow = arrow.extract_surface().triangulate()
verts = arrow.points + np.asarray([pose3d])
faces = arrow.faces.astype(np.uint32).reshape((arrow.n_faces, 4))[:, 1:]
mesh = trimesh.Trimesh(verts, faces)
material = pyrender.MetallicRoughnessMaterial(metallicFactor=metallicFactor, roughnessFactor=roughnessFactor, alphaMode='OPAQUE', baseColorFactor=l_color[i])
mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=smooth)
scene.add(mesh, f"arrow_{i}")
focal, princpt = cam_param['focal'], cam_param['princpt']
camera_pose = np.eye(4)
if 'R' in cam_param.keys():
camera_pose[:3, :3] = cam_param['R']
if 't' in cam_param.keys():
camera_pose[:3, 3] = cam_param['t']
camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
# camera
camera_pose = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ camera_pose
camera_pose = np.linalg.inv(camera_pose)
scene.add(camera, pose=camera_pose)
# renderer
renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)
# light
light = pyrender.DirectionalLight(intensity=intensity)
scene.add(light, pose=camera_pose)
# render
rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
rgb = rgb[:,:,:3].astype(np.float32)
fg = (depth > 0)[:,:,None].astype(np.float32)
# Simple smoothing of the mask
bg_blending_radius = 1
bg_blending_kernel = 2.0 * torch.ones((1, 1, 2 * bg_blending_radius + 1, 2 * bg_blending_radius + 1)) / (2 * bg_blending_radius + 1) ** 2
bg_blending_bias = -torch.ones(1)
fg = fg.reshape((fg.shape[0],fg.shape[1]))
fg = torch.from_numpy(fg).unsqueeze(0)
fg = torch.clamp_min(torch.nn.functional.conv2d(fg, weight=bg_blending_kernel, bias=bg_blending_bias, padding=bg_blending_radius) * fg, 0.0)
fg = fg.permute(1,2,0).numpy()
# Alpha-blending
img = (fg * (alpha * rgb + (1.0-alpha) * img) + (1-fg) * img).astype(np.uint8)
renderer.delete()
return img.astype(np.uint8)
def length(v):
return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
def cross(v0, v1):
return [
v0[1]*v1[2]-v1[1]*v0[2],
v0[2]*v1[0]-v1[2]*v0[0],
v0[0]*v1[1]-v1[0]*v0[1]]
def dot(v0, v1):
return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]
def normalize(v, eps=1e-13):
l = length(v)
return [v[0]/(l+eps), v[1]/(l+eps), v[2]/(l+eps)]
def lookAt(eye, target, *args, **kwargs):
"""
eye is the point of view, target is the point which is looked at and up is the upwards direction.
Input should be in OpenCV format - we transform arguments to OpenGL
Do compute in OpenGL and then transform back to OpenCV
"""
# Transform from OpenCV to OpenGL format
# eye = [eye[0], -eye[1], -eye[2]]
# target = [target[0], -target[1], -target[2]]
up = [0,-1,0]
eye, at, up = eye, target, up
zaxis = normalize((at[0]-eye[0], at[1]-eye[1], at[2]-eye[2]))
xaxis = normalize(cross(zaxis, up))
yaxis = cross(xaxis, zaxis)
zaxis = [-zaxis[0],-zaxis[1],-zaxis[2]]
viewMatrix = np.asarray([
[xaxis[0], xaxis[1], xaxis[2], -dot(xaxis, eye)],
[yaxis[0], yaxis[1], yaxis[2], -dot(yaxis, eye)],
[zaxis[0], zaxis[1], zaxis[2], -dot(zaxis, eye)],
[0, 0, 0, 1]]
).reshape(4,4)
# OpenGL to OpenCV
viewMatrix = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ viewMatrix
return viewMatrix
def print_distance_on_image(pred_rend_array, humans, _color):
# Add distance to the image.
font = ImageFont.load_default()
rend_pil = Image.fromarray(pred_rend_array)
draw = ImageDraw.Draw(rend_pil)
for i_hum, hum in enumerate(humans):
# distance
transl = hum['transl_pelvis'].cpu().numpy().reshape(3)
dist_cam = np.sqrt(((transl[[0,2]])**2).sum()) # discarding Y axis
# 2d - bbox
bbox = get_bbox(hum['j2d_smplx'].cpu().numpy(), factor=1.35, output_format='x1y1x2y2')
loc = [(bbox[0] + bbox[2]) / 2., bbox[1]]
txt = f"{dist_cam:.2f}m"
length = font.getlength(txt)
loc[0] = loc[0] - length // 2
fill = tuple((np.asarray(_color[i_hum]) * 255).astype(np.int32).tolist())
draw.text((loc[0], loc[1]), txt, fill=fill, font=font)
return np.asarray(rend_pil)
def get_bbox(points, factor=1., output_format='xywh'):
"""
Args:
- y: [k,2]
Return:
- bbox: [4] in a specific format
"""
assert len(points.shape) == 2, f"Wrong shape, expected two-dimensional array. Got shape {points.shape}"
assert points.shape[1] == 2
x1, x2 = points[:,0].min(), points[:,0].max()
y1, y2 = points[:,1].min(), points[:,1].max()
cx, cy = (x2 + x1) / 2., (y2 + y1) / 2.
sx, sy = np.abs(x2 - x1), np.abs(y2 - y1)
sx, sy = int(factor * sx), int(factor * sy)
x1, y1 = int(cx - sx / 2.), int(cy - sy / 2.)
x2, y2 = int(cx + sx / 2.), int(cy + sy / 2.)
if output_format == 'xywh':
return [x1,y1,sx,sy]
elif output_format == 'x1y1x2y2':
return [x1,y1,x2,y2]
else:
raise NotImplementedError
def render_side_views(img_array, _color, humans, model, K):
_bg = 255. # white
# camera
focal = np.asarray([K[0,0,0].cpu().numpy(),K[0,1,1].cpu().numpy()])
princpt = np.asarray([K[0,0,-1].cpu().numpy(),K[0,1,-1].cpu().numpy()])
# Get the vertices produced by the model.
l_verts = [humans[j]['verts_smplx'].cpu().numpy() for j in range(len(humans))]
l_faces = [model.smpl_layer['neutral'].bm_x.faces for j in range(len(humans))]
bg_array = 1 + 0.*img_array.copy()
if len(humans) == 0:
pred_rend_array_bis = _bg * bg_array.copy()
pred_rend_array_sideview = _bg * bg_array.copy()
pred_rend_array_bev = _bg * bg_array.copy()
else:
# Small displacement
H_bis = lookAt(eye=[2.,-1,-2], target=[0,0,3])
pred_rend_array_bis = render_meshes(_bg* bg_array.copy(), l_verts, l_faces,
{'focal': focal, 'princpt': princpt, 'R': H_bis[:3,:3], 't': H_bis[:3,3]},
alpha=1.0, color=_color, show_camera=True)
# Where to look at
l_z = []
for hum in humans:
l_z.append(hum['transl_pelvis'].cpu().numpy().reshape(-1)[-1])
target_z = np.median(np.asarray(l_z))
# Sideview
H_sideview = lookAt(eye=[2.2*target_z,0,target_z], target=[0,0,target_z])
pred_rend_array_sideview = render_meshes(_bg*bg_array.copy(), l_verts, l_faces,
{'focal': focal, 'princpt': princpt, 'R': H_sideview[:3,:3], 't': H_sideview[:3,3]},
alpha=1.0, color=_color, show_camera=True)
# Bird-Eye-View
H_bev = lookAt(eye=[0.,-2*target_z,target_z-0.001], target=[0,0,target_z])
pred_rend_array_bev = render_meshes(_bg* bg_array.copy(), l_verts, l_faces,
{'focal': focal, 'princpt': princpt, 'R': H_bev[:3,:3], 't': H_bev[:3,3]},
alpha=1.0, color=_color, show_camera=True)
return pred_rend_array_bis, pred_rend_array_sideview, pred_rend_array_bev |